首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadherins are homophilic cell-cell adhesion molecules implicated in cell growth, differentiation, and organization into tissues during embryonic development. They accumulate at cell-cell contact sites and act as adhesion-activated signaling receptors. Here, we show that the dynamic assembly of N-cadherin at cell-cell contacts involves lipid rafts. In C2C12 myoblasts, immunofluorescence and biochemical experiments demonstrate that N-cadherin present at cell-cell contacts is colocalized with lipid rafts. Disruption of lipid rafts leads to the inhibition of cell-cell adhesion and disorganization of N-cadherin-dependent cell-cell contacts without modifying the association of N-cadherin with catenins and its availability at the plasma membrane. Fluorescent recovery after photobleaching experiments demonstrate that at the dorsal plasma membrane, lipid rafts are not directly involved in the diffusional mobility of N-cadherin. In contrast, at cell-cell junctions N-cadherin association with lipid rafts allows its stabilization enabling the formation of a functional adhesive complex. We show that lipid rafts, as homophilic interaction and F-actin association, stabilize cadherin-dependent adhesive complexes. Homophilic interactions and F-actin association of N-cadherin are both required for its association to lipid rafts. We thus identify lipid rafts as new regulators of cadherin-mediated cell adhesion.  相似文献   

2.
N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in skeletal muscle cell differentiation. We show that inhibition of N-cadherin-dependent adhesion impairs the upregulation of the two cyclin-dependent kinase inhibitors p21 and p27, the expression of the muscle-specific genes myogenin and troponin T, and C2C12 myoblast fusion. To determine the nature of N-cadherin-mediated signals involved in myogenesis, we investigated whether N-cadherin-dependent adhesion regulates the activity of Rac1, Cdc42Hs, and RhoA. N-cadherin-dependent adhesion decreases Rac1 and Cdc42Hs activity, and as a consequence, c-jun NH2-terminal kinase (JNK) MAPK activity but not that of the p38 MAPK pathway. On the other hand, N-cadherin-mediated adhesion increases RhoA activity and activates three skeletal muscle-specific promoters. Furthermore, RhoA activity is required for beta-catenin accumulation at cell-cell contact sites. We propose that cell-cell contacts formed via N-cadherin trigger signaling events that promote the commitment to myogenesis through the positive regulation of RhoA and negative regulation of Rac1, Cdc42Hs, and JNK activities.  相似文献   

3.
p120 catenin is a major regulator of cadherin stability at cell-cell contacts and a modulator of Rho GTPase activities. In C2C12 myoblasts, N-cadherin is stabilized at cell contacts through its association with cholesterol-rich membrane domains or lipid rafts (LR) and acts as an adhesion-activated receptor that activates RhoA, an event required for myogenesis induction. Here, we report that association of p120 catenin with N-cadherin at cell contacts occurs specifically in LR. We demonstrate that interaction of p120 catenin with N-cadherin is required for N-cadherin association with LR and for its stabilization at cell contacts. LR disruption inhibits myogenesis induction and N-cadherin-dependent RhoA activation as does the perturbation of the N-cadherin-p120 catenin complex after p120 catenin knockdown. Finally, we observe an N-cadherin-dependent accumulation of RhoA at phosphatidylinositol 4,5-bisphosphate-enriched cell contacts which is lost after LR disruption. Thus, a functional N-cadherin-catenin complex occurs in cholesterol-rich membrane microdomains which allows the recruitment of RhoA and the regulation of its activity during myogenesis induction.Skeletal myogenesis is a multistep process regulated by diffusible molecules and the interaction of muscle cell precursors with their neighbors and the extracellular matrix (1, 2). Particularly, N-cadherin-dependent intercellular adhesion has a major role in cell cycle exit and induction of skeletal muscle differentiation through activation of the Rho family GTPases. RhoA positively regulates MyoD expression and skeletal muscle differentiation because it is required for serum response factor-mediated activation of several muscle-specific gene promoters (3, 4).Dynamic association of cadherin complexes at the plasma membrane (PM)4 is crucial for cadherin-mediated signaling. Their extracellular domain mediates homophilic cell-cell adhesion, whereas the intracellular domain associates with catenins that produce attachment sites for the F-actin cytoskeleton (57). The juxtamembrane domain of the cadherin cytoplasmic tail binds to p120 catenin, which regulates cadherin stability at cell contacts and modulates Rho GTPase activities (811). Cadherin stability is directly dependent on p120 catenin, and in its absence most cadherins are internalized and often degraded, suggesting that p120 catenin controls cadherin turnover at the cell surface (11, 12). Moreover, mutations in the E-cadherin region that bind to p120 catenin dissociate the E-cadherin-p120 catenin complex and disrupt strong cell adhesion, although interaction with other catenins remains intact (13). Cadherin stability at cell-cell contacts is also regulated by homophilic binding between extracellular domains and association with the F-actin cytoskeleton (14, 15). Association of N-cadherin with cholesterol-enriched microdomains, called lipid rafts (LR), at cell contacts, also stabilizes N-cadherin (16). Because p120 catenin interaction with cadherins and N-cadherin association with LR at cell contact sites are both involved in cadherin stability at cell contact sites, we asked whether p120 catenin association with N-cadherin required LR. We observed that their association occurred specifically in these cholesterol-rich domains. Moreover, using an N-cadherin mutant unable to bind to p120 catenin, we showed that the N-cadherin/p120 catenin interaction was required for N-cadherin association with LR and its stabilization at cell contacts. Because N-cadherin is implicated in the commitment to myogenesis through RhoA activation, we questioned whether its association with p120 catenin in LR was a prerequisite for RhoA activation. LR disruption inhibited myogenesis induction, association of p120 catenin with N-cadherin, and N-cadherin-dependent RhoA activation, as did the perturbation of the N-cadherin-p120 catenin complex after p120 catenin knockdown. Together, these data suggest a crucial role for the N-cadherin/p120 catenin association in LR in the regulation of RhoA activity during myogenesis induction.  相似文献   

4.
Neuronal nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central and peripheral nervous system and are localized at synaptic and extrasynaptic sites of the cell membrane. However, the mechanisms regulating the localization of nicotinic receptors in distinct domains of the cell membrane are not well understood. N-cadherin is a cell adhesion molecule that mediates homotypic binding between apposed cell membranes and regulates the actin cytoskeleton through protein interactions with the cytoplasmic domain. At synaptic contacts, N-cadherin is commonly localized adjacent to the active zone and the postsynaptic density, suggesting that N-cadherin contributes to the assembly of the synaptic complex. To examine whether N-cadherin homotypic binding regulates the cell surface localization of nicotinic receptors, this study used heterologous expression of N-cadherin and α3β4 nAChR subunits C-terminally fused to a myc-tag epitope in Chinese hamster ovary cells. Expression levels of α3β4 nAChRs at cell-cell contacts and at contact-free cell membrane were analyzed by confocal microscopy. α3β4 nAChRs were found distributed over the entire surface of contacting cells lacking N-cadherin. In contrast, N-cadherin-mediated cell-cell contacts were devoid of α3β4 nAChRs. Cell-cell contacts mediated by N-cadherin-deleted proteins lacking the β-catenin binding region or the entire cytoplasmic domain showed control levels of α3β4 nAChRs expression. Inhibition of actin polymerization with latrunculin A and cytochalasin D did not affect α3β4 nAChRs localization within N-cadherin-mediated cell-cell contacts. However, treatment with the Rho associated kinase inhibitor Y27632 resulted in a significant increase in α3β4 nAChR levels within N-cadherin-mediated cell-cell contacts. Analysis of α3β4 nAChRs localization in polarized Caco-2 cells showed specific expression on the apical cell membrane and colocalization with apical F-actin and the actin nucleator Arp3. These results indicate that actomyosin contractility downstream of N-cadherin homotypic binding regulates the cell surface localization of α3β4 nAChRs presumably through interactions with a particular pool of F-actin.  相似文献   

5.
Given the importance of intercellular adhesion for many regulatory processes, we have investigated the control of protein kinase Calpha (PKCalpha) targeting to the cell-cell contacts. We have previously shown that, upon treatment of the pituitary cell line GH3B6 with thyrotropin-releasing hormone (TRH) or phorbol 12-myristate 13-acetate (PMA), human PKCalpha (hPKCalpha) is selectively targeted to the cell-cell contacts (42). Here we show that the D294G mutation of hPKCalpha, previously identified in a subpopulation of human tumors, induces the loss of this selective targeting. The D294G mutant is instead targeted to the entire plasma membrane, including the cell-cell contacts, and the duration of the first rapid and transient translocation induced by TRH (42) is longer than that of the wild-type enzyme (93.3 versus 22.5 s), coinciding with the duration of the [Ca(2+)](i) increase. We found that in the presence or absence of PMA, RACK1 is never localized at the cell-cell contacts nor was it coimmunoprecipitated with hPKCalpha wild type or the D294G mutant. In contrast, PMA treatment or long-term TRH stimulation resulted in the presence of F-actin and beta-catenin at the cell-cell contacts and their exclusion from the rest of the plasma membrane. Upon disruption of the F-actin network with phalloidin or cytochalasin D, wild-type hPKCalpha translocates but did not accumulate at the plasma membrane and beta-catenin did not accumulate at the cell-cell contacts. In contrast, the disruption of the F-actin network affected neither translocation nor accumulation of the D294G mutant. These results show that the presence of PKCalpha at the cell-cell contacts is a regulated process which depends upon the integrity of both PKCalpha and the actin microfilament network.  相似文献   

6.
Previous studies have indicated an intimate linkage between gap junction and adherens junction formation. It was suggested this could reflect the close membrane-membrane apposition required for junction formation. In NIH3T3 cells, we observed the colocalization of connexin43 (Cx43alpha1) gap junction protein with N-cadherin, p120, and other N-cadherin-associated proteins at regions of cell-cell contact. We also found that Cx43alpha1, N-cadherin, and N-cadherin-associated proteins were coimmunoprecipitated by antibodies to either Cx43alpha1, N-cadherin, or various N-cadherin-associated proteins. These findings suggest that Cx43alpha1 and N-cadherin are coassembled in a multiprotein complex containing various N-cadherin-associated proteins. Studies using siRNA knockdown indicated that cell surface expression of Cx43alpha1 required N-cadherin, and conversely, N-cadherin cell surface expression required Cx43alpha1. Pulse-chase labeling and cell surface biotinylation experiments indicated that in the absence of N-cadherin, Cx43alpha1 cell surface trafficking is blocked. Surprisingly, siRNA knockdown of p120, an N-cadherin-associated protein known to modulate cell surface turnover of N-cadherin, reduced N-cadherin cell surface expression without altering Cx43alpha1 expression. These observations suggest that in contrast to the coregulated cell surface trafficking of Cx43alpha1 and N-cadherin, N-cadherin turnover at the cell surface may be regulated independently of Cx43alpha1. Functional studies showed gap junctional communication is reduced and cell motility inhibited with N-cadherin or Cx43alpha1 knockdown, consistent with the observed loss of both gap junction and cadherin contacts with either knockdown. Overall, these studies indicate that the intracellular coassembly of connexin and cadherin is required for gap junction and adherens junction formation, a process that likely underlies the intimate association between gap junction and adherens junction formation.  相似文献   

7.
Melanoma progression is associated with changes in adhesion receptor expression, in particular upregulation of N-cadherin which promotes melanoma cell survival and invasion. Plasma membrane lipid rafts contribute to the compartmentalization of signaling complexes thereby regulating their function, but how they may affect the properties of adhesion molecules remains elusive. In this study, we addressed the question whether lipid rafts in melanoma cells may contribute to the compartmentalization of N-cadherin. We show that a fraction of N-cadherin in a complex with catenins is associated with cholesterol/sphingolipid-rich membrane microdomains in aggressive melanoma cells in vitro and experimental melanomas in vivo. Partitioning of N-cadherin in membrane rafts is not modulated by growth factors and signaling pathways relevant to melanoma progression, is not necessary for cell-cell junctions' establishment or maintenance, and is not affected by cell-cell junctions' and actin cytoskeleton disruption. These results reveal that two independent pools of N-cadherin exist on melanoma cell surface: one pool is independent of lipid rafts and is engaged in cell-cell junctions, while a second pool is localized in membrane rafts and does not participate in cell-cell adhesions. Targeting to membrane rafts may represent a previously unrecognized mechanism regulating N-cadherin function in melanoma cells.  相似文献   

8.
During embryonic development, cell migration and cell differentiation are associated with dynamic modulations both in time and space of the repertoire and function of adhesion receptors, but the nature of the mechanisms responsible for their coordinated occurrence remains to be elucidated. Thus, migrating neural crest cells adhere to fibronectin in an integrin-dependent manner while maintaining reduced N-cadherin–mediated intercellular contacts. In the present study we provide evidence that, in these cells, the control of N-cadherin may rely directly on the activity of integrins involved in the process of cell motion. Prevention of neural crest cell migration using RGD peptides or antibodies to fibronectin and to β1 and β3 integrins caused rapid N-cadherin–mediated cell clustering. Restoration of stable intercellular contacts resulted essentially from the recruitment of an intracellular pool of N-cadherin molecules that accumulated into adherens junctions in tight association with the cytoskeleton and not from the redistribution of a preexisting pool of surface N-cadherin molecules. In addition, agents that cause elevation of intracellular Ca2+ after entry across the plasma membrane were potent inhibitors of cell aggregation and reduced the N-cadherin– mediated junctions in the cells. Finally, elevated serine/ threonine phosphorylation of catenins associated with N-cadherin accompanied the restoration of intercellular contacts. These results indicate that, in migrating neural crest cells, β1 and β3 integrins are at the origin of a cascade of signaling events that involve transmembrane Ca2+ fluxes, followed by activation of phosphatases and kinases, and that ultimately control the surface distribution and activity of N-cadherin. Such a direct coupling between adhesion receptors by means of intracellular signals may be significant for the coordinated interplay between cell–cell and cell–substratum adhesion that occurs during embryonic development, in wound healing, and during tumor invasion and metastasis.  相似文献   

9.
Protein zero (P(o)) is the immunoglobulin gene superfamily glycoprotein that mediates the self-adhesion of the Schwann cell plasma membrane that yields compact myelin. HeLa is a poorly differentiated carcinoma cell line that has lost characteristic morphological features of the cervical epithelium from which it originated. Normally, HeLa cells are not self-adherent. However, when P(o) is artificially expressed in this line, cells rapidly aggregate, and P(o) concentrates specifically at cell-cell contact sites. Rows of desmosomes are generated at these interfaces, the plasma membrane localization of cingulin and ZO-1, proteins that have been shown to be associated with tight junctions, is substantially increased, and cytokeratins coalesce into a cohesive intracellular network. Immunofluorescence patterns for the adherens junction proteins N-cadherin, alpha-catenin, and vinculin, and the desmosomal polypeptides desmoplakin, desmocollin, and desmoglein, are also markedly enhanced at the cell surface. Our data demonstrate that obligatory cell-cell adhesion, which in this case is initially brought about by the homophilic association of P(o) molecules across the intercellular cleft, triggers pronounced augmentation of the normally sluggish or sub-basal cell adhesion program in HeLa cells, culminating in suppression of the transformed state and reversion of the monolayer to an epithelioid phenotype. Furthermore, this response is apparently accompanied by an increase in mRNA and protein levels for desmoplakin and N-cadherin which are normally associated with epithelial junctions. Our conclusions are supported by analyses of ten proteins we examined immunochemically (P(o), cingulin, ZO-1, desmoplakin, desmoglein, desmocollin, N-cadherin, alpha-catenin, vinculin, and cytokeratin-18), and by quantitative polymerase chain reactions to measure relative amounts of desmoplakin and N-cadherin mRNAs. P(o) has no known signaling properties; the dramatic phenotypic changes we observed are highly likely to have developed in direct response to P(o)-induced cell adhesion. More generally, the ability of this "foreign" membrane adhesion protein to stimulate desmosome and adherens junction formation by augmenting well-studied cadherin-based adhesion mechanisms raises the possibility that perhaps any bona fide cell adhesion molecule, when functionally expressed, can engage common intracellular pathways and trigger reversion of a carcinoma to an epithelial-like phenotype.  相似文献   

10.
Myoblast fusion is a key process in multinucleated muscle formation. Prior to fusion, myoblasts recognize and adhere to each other with the aid of cell-adhesion proteins integrated into the membrane. Their intracellular domains participate in signal transduction by binding to cytoplasmic proteins. Here we identified the calcium-dependent cell-adhesion protein N-cadherin as the binding partner of the guanine-nucleotide exchange factor Schizo/Loner in Drosophila melanogaster. N-cadherin was expressed in founder cells and fusion-competent myoblasts of Drosophila during the first fusion phase. Our genetic analyses demonstrated that the myoblast fusion defect of schizo/loner mutants is rescued in part by the loss-of-function mutation of N-cadherin, which suggests that Schizo/Loner is a negative regulator of N-cadherin. Based on our findings, we propose a model where N-cadherin must be removed from the myoblast membrane to induce a protein-free zone at the cell-cell contact point to permit fusion.  相似文献   

11.
Ezrin, a membrane cytoskeleton linker, is involved in cellular functions, including epithelial cell morphogenesis and adhesion. A mutant form of ezrin, ezrin T567D, maintains the protein in an open conformation, which when expressed in Madin-Darby canine kidney cells causes extensive formation of lamellipodia and altered cell-cell contacts at low cell density. Furthermore, these cells do not form tubules when grown in a collagen type I matrix. While measuring the activity of Rho family GTPases, we found that Rac1, but not RhoA or Cdc 42, is activated in ezrin T567D-expressing cells, compared with cells expressing wild-type ezrin. Together with Rac1 activation, we observed an accumulation of E-cadherin in intracellular compartments and a concomitant decrease in the level of E-cadherin present at the plasma membrane. This effect could be reversed with a dominant negative form of Rac1, N17Rac1. We show that after a calcium switch, the delivery of E-cadherin from an internalized pool to the plasma membrane is greatly delayed in ezrin T567D-producing cells. In confluent cells, ezrin T567D production decreases the rate of E-cadherin internalization. Our results identify a new role for ezrin in cell adhesion through the activation of the GTPase Rac1 and the trafficking of E-cadherin to the plasma membrane.  相似文献   

12.
To test how cell-cell contacts regulate microtubule (MT) and actin cytoskeletal dynamics, we examined dynamics in cells that were contacted on all sides with neighboring cells in an epithelial cell sheet that was undergoing migration as a wound-healing response. Dynamics were recorded using time-lapse digital fluorescence microscopy of microinjected, labeled tubulin and actin. In fully contacted cells, most MT plus ends were quiescent; exhibiting only brief excursions of growth and shortening and spending 87.4% of their time in pause. This contrasts MTs in the lamella of migrating cells at the noncontacted leading edge of the sheet in which MTs exhibit dynamic instability. In the contacted rear and side edges of these migrating cells, a majority of MTs were also quiescent, indicating that cell-cell contacts may locally regulate MT dynamics. Using photoactivation of fluorescence techniques to mark MTs, we found that MTs in fully contacted cells did not undergo retrograde flow toward the cell center, such as occurs at the leading edge of motile cells. Time-lapse fluorescent speckle microscopy of fluorescently labeled actin in fully contacted cells revealed that actin did not flow rearward as occurs in the leading edge lamella of migrating cells. To determine if MTs were required for the maintenance of cell-cell contacts, cells were treated with nocodazole to inhibit MTs. After 1-2 h in either 10 microM or 100 nM nocodazole, breakage of cell-cell contacts occurred, indicating that MT growth is required for maintenance of cell-cell contacts. Analysis of fixed cells indicated that during nocodazole treatment, actin became reduced in adherens junctions, and junction proteins alpha- and beta-catenin were lost from adherens junctions as cell-cell contacts were broken. These results indicate that a MT plus end capping protein is regulated by cell-cell contact, and in turn, that MT growth regulates the maintenance of adherens junctions contacts in epithelia.  相似文献   

13.
Remodelling of the plasma membrane cytoarchitecture is crucial for the regulation of epithelial cell adhesion and permeability. In Madin-Darby canine kidney cells, the protein AHNAK relocates from the cytosol to the cytosolic surface of the plasma membrane during the formation of cell-cell contacts and the development of epithelial polarity. This targeting is reversible and regulated by Ca(2+)-dependent cell-cell adhesion. At the plasma membrane, AHNAK associates as a multimeric complex with actin and the annexin 2/S100A10 complex. The S100A10 subunit serves to mediate the interaction between annexin 2 and the COOH-terminal regulatory domain of AHNAK. Down-regulation of both annexin 2 and S100A10 using an annexin 2-specific small interfering RNA inhibits the association of AHNAK with plasma membrane. In Madin-Darby canine kidney cells, down-regulation of AHNAK using AHNAK-specific small interfering RNA prevents cortical actin cytoskeleton reorganization required to support cell height. We propose that the interaction of AHNAK with the annexin 2/S100A10 regulates cortical actin cytoskeleton organization and cell membrane cytoarchitecture.  相似文献   

14.
The effects of altering N-cadherin N-glycosylation on several cadherin-mediated cellular behaviors were investigated using small interfering RNA and site-directed mutagenesis. In HT1080 fibrosarcoma cells, small interfering RNA-directed knockdown of N-acetylglucosaminyltransferase V (GnT-V), a glycosyltransferase up-regulated by oncogene signaling, caused decreased expression of N-linked β(1,6)-branched glycans expressed on N-cadherin, resulting in enhanced N-cadherin-mediated cell-cell adhesion, but had no effect on N-cadherin expression on the cell surface. This effect on adhesion was accompanied by decreased cell migration and invasion, opposite of the effects observed when GnT-V was overexpressed in these cells (Guo, H. B., Lee, I., Kamar, M., and Pierce, M. (2003) J. Biol. Chem. 278, 52412–52424). A detailed study using site-directed mutagenesis demonstrated that three of the eight putative N-glycosylation sites in the N-cadherin sequence showed N-glycan expression. Moreover, all three of these sites, located in the extracellular domains EC2 and EC3, were shown by leucoagglutinating phytohemagglutinin binding to express at least some β(1,6)-branched glycans, products of GnT-V activity. Deletion of these sites had no effect on cadherin levels on the cell surface but led to increased stabilization of cell-cell contacts, cell-cell adhesion- mediated intracellular signaling, and reduced cell migration. We show for the first time that these deletions had little effect on formation of the N-cadherin-catenin complex but instead resulted in increased N-cadherin cis-dimerization. Branched N-glycan expression at three sites in the EC2 and -3 domains regulates N-cadherin-mediated cell-cell contact formation, outside-in signaling, and cell migration and is probably a significant contributor to the increase in the migratory/invasive phenotype of cancer cells that results when GnT-V activity is up-regulated by oncogene signaling.  相似文献   

15.
The two major isoforms (180kDa and 140kDa) of the neural cell adhesion molecule (N-CAM) are crucially involved in neurogenesis and brain repair via activation of the mitogen-activated protein kinase (MAPK) cascade. Modification by glycosylation, and homophilic and heterophilic interactions regulate the function of N-CAM, but little is known about the interplay of these processes. In the neuron-like PC12 cell line, extracellular small acidic peptides have been shown to modulate the expression of N-CAM mRNA and protein and regulate its translocation to the plasma membrane. Among these peptides, a synthetic Ig-III-like short sequence (H(2)N-DDSDEEN-COOH), designated sSP, was particularly potent. In this study, we analyzed the cross-talk between nerve growth factor (NGF) and extracellular sSP in native and N-CAM-transfected PC12 cells to determine if these systems interact to modulate transduction pathways and regulate early steps of neurogenesis in vitro. Our results indicate that sSP accelerated the phosphorylation of extracellular regulated kinase-1 (ERK1) and -2 (ERK2) and promoted plasma membrane translocation of 180kDa N-CAM. By stabilizing cell-cell contacts and promoting cell cluster formation, these events, which were mediated via a significant increase in intracellular Ca(2+), regulated some of the early stages of the NGF-induced differentiation process.  相似文献   

16.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) localized on the plasma membrane plays a central role in various normal biological responses including tissue remodeling, wound heeling, and angiogenesis and in cancer cell invasion and metastasis, by functioning as a collagenase and activating other matrix metalloproteinases. In order to elucidate the molecular mechanism of the MT1-MMP targeted localization on the plasma membrane, we examined the participation of syntaxin proteins in MT1-MMP intracellular transport to the plasma membrane in human gastric epithelial AGS cells. Western blotting showed that syntaxin 3 and 4 proteins, which are known to function in intracellular transport towards the plasma membrane, were expressed in AGS cells. Immunocytochemistry revealed that transient transfection of AGS cells with dominant-negative mutant syntaxin 4 decreased plasma membrane MT1-MMP expression. In contrast, transient transfection with either dominant-negative mutant syntaxin 3 or 7 did not affect MT1-MMP localization on the plasma membrane. Cell surface biotinylation assay and Matrigel chamber assay demonstrated that stable transfection with dominant-negative mutant syntaxin 4 decreased the amount of MT1-MMP on the plasma membranes and inhibited the cell invasiveness. We suggest that syntaxin 4 is involved in the intracellular transport of MT1-MMP toward the plasma membrane.  相似文献   

17.
Cartilage formation in the embryonic limb is presaged by a cellular condensation phase that is mediated by both cell-cell and cell-matrix interactions. N-Cadherin, a Ca(2+)-dependent cell-cell adhesion molecule, is expressed at higher levels in the condensing mesenchyme, followed by down-regulation upon chondrogenic differentiation, strongly suggesting a functional role in the cellular condensation process. To further examine the role of N-cadherin, we have generated expression constructs of wild type and two deletion mutants (extracellular and intracellular) of N-cadherin in the avian replication-competent, RCAS retrovirus, and transfected primary chick limb mesenchymal cell cultures with these constructs. The effects of altered, sustained expression of N-cadherin and its mutant forms on cellular condensation, on the basis of peanut agglutinin (DNA) staining, and chondrogenesis, based on expression of chondrocyte phenotypic markers, were characterized. Cellular condensation was relatively unchanged in cultures overexpressing wild type N-cadherin, compared to controls on all days in culture. However, expression of either of the deletion mutant forms of N-cadherin resulted in decreased condensation, with the extracellular deletion mutant demonstrating the most severe inhibition, suggesting a requirement for N-cadherin mediated cell-cell adhesion and signaling in cellular condensation. Subsequent chondrogenic differentiation was also affected in all cultures overexpressing the N-cadherin constructs, on the basis of metabolic sulfate incorporation, the presence of the cartilage matrix proteins collagen type II and cartilage proteoglycan link protein, and alcian blue staining of the matrix. The characteristics of the cultures suggest that the N-cadherin mutants disrupt proper cellular condensation and subsequent chondrogenesis, while the cultures overexpressing wild type N-cadherin appear to condense normally, but are unable to proceed toward differentiation, possibly due to the prolonged maintenance of increased cell-cell adhesiveness. Thus, spatiotemporally regulated N-cadherin expression and function, at the level of both homotypic binding and linkage to the cytoskeleton, is required for chondrogenesis of limb mesenchymal cells.  相似文献   

18.
ADAM10 (a disintegrin and metalloprotease) initiates regulated intramembrane proteolysis by shedding the ectodomain of a number of different substrates. Shedding is followed by subsequent intramembrane proteolysis leading to the liberation of intracellular domains capable of nuclear signaling. ADAM10 substrates have been found at cell-cell contacts and are apparently involved in cell-cell interaction and cell migration. Here we have investigated the cellular mechanism that guides ADAM10 to substrates at cell-cell contacts. We demonstrate that intracellular trafficking of ADAM10 critically requires a novel sorting signal within its cytoplasmic domain. Sequential deletion of the cytoplasmic domain and site-directed mutagenesis suggest that a potential Src homology 3-binding domain is essential for ADAM10 sorting. In a polarized epithelial cell line this motif not only targets ADAM10 to adherens junctions but is also strictly required for ADAM10 function in E-cadherin processing and cell migration.  相似文献   

19.
Desmosomes are composed of two morphologically and biochemically distinct domains, a cytoplasmic plaque and membrane core. We have initiated a study of the synthesis and assembly of these domains in Madin-Darby canine kidney (MDCK) epithelial cells to understand the mechanisms involved in the formation of desmosomes. Previously, we reported the kinetics of assembly of two components of the cytoplasmic plaque domain, Desmoplakin I/II (Pasdar, M., and W. J. Nelson. 1988. J. Cell Biol. 106:677-685 and 106:687-699. We have now extended this analysis to include a major glycoprotein component of the membrane core domain, Desmoglein I (DGI; Mr = 150,000). Using metabolic labeling and inhibitors of glycoprotein processing and intracellular transport, we show that DGI biosynthesis is a sequential process with defined stages. In the absence of cell-cell contact, DGI enters a Triton X-100 soluble pool and is core glycosylated. The soluble DGI is then transported to the Golgi complex where it is first complex glycosylated and then titrated into an insoluble pool. The insoluble pool of DGI is subsequently transported to the plasma membrane and is degraded rapidly (t1/2 less than 4 h). Although this biosynthetic pathway occurs independently of cell-cell contact, induction of cell-cell contact results in dramatic increases in the efficiency and rate of titration of DGI from the soluble to the insoluble pool, and its transport to the plasma membrane where DGI becomes metabolically stable (t1/2 greater than 24 h). Taken together with our previous study of DPI/II, we conclude that newly synthesized components of the cytoplasmic plaque and membrane core domains are processed and assembled with different kinetics indicating that, at least initially, each domain is assembled separately in the cell. However, upon induction of cell-cell contact there is a rapid titration of both components into an insoluble and metabolically stable pool at the plasma membrane that is concurrent with desmosome assembly.  相似文献   

20.
E-Cadherin plays critical roles in many aspects of cell adhesion, epithelial development, and the establishment and maintenance of epithelial polarity. The fate of E-cadherin once it is delivered to the basolateral cell surface, and the mechanisms which govern its participation in adherens junctions, are not well understood. Using surface biotinylation and recycling assays, we observed that some of the cell surface E-cadherin is actively internalized and is then recycled back to the plasma membrane. The pool of E-cadherin undergoing endocytosis and recycling was markedly increased in cells without stable cell-cell contacts, i.e., in preconfluent cells and after cell contacts were disrupted by depletion of extracellular Ca2+, suggesting that endocytic trafficking of E-cadherin is regulated by cell-cell contact. The reformation of cell junctions after replacement of Ca2+ was then found to be inhibited when recycling of endocytosed E-cadherin was disrupted by bafilomycin treatment. The endocytosis and recycling of E-cadherin and of the transferrin receptor were similarly inhibited by potassium depletion and by bafilomycin treatment, and both proteins were accumulated in intracellular compartments by an 18 degrees C temperature block, suggesting that endocytosis may occur via a clathrin-mediated pathway. We conclude that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E-cadherin for junction formation in development, tissue remodeling, and tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号