首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Yun SH  Ji SC  Jeon HJ  Wang X  Lee Y  Choi BS  Lim HM 《Molecules and cells》2012,33(2):211-216
Cnu is a small 71-amino acid protein that complexes with H-NS and binds to a specific sequence in the replication origin of the E. coli chromosome. To understand the mechanism of interaction between Cnu and H-NS, we used bacterial genetics to select and analyze Cnu variants that cannot complex with H-NS. Out of 2,000 colonies, 40 Cnu variants were identified. Most variants (82.5%) had a single mutation, but a few variants (17.5%) had double amino acid changes. An in vitro assay was used to identify Cnu variants that were truly defective in H-NS binding. The changes in these defective variants occurred exclusively at charged amino acids (Asp, Glu, or Lys) on the surface of the protein. We propose that the attractive force that governs the Cnu-H-NS interaction is an ionic bond, unlike the hydrophobic interaction that is the major attractive force in most proteins.  相似文献   

2.
Bae SH  Liu D  Lim HM  Lee Y  Choi BS 《Biochemistry》2008,47(7):1993-2001
Cnu is a nucleoid protein that has a high degree of sequence homology with Hha/YmoA family proteins, which bind to chromatin and regulate the expression of Escherichia coli virulence genes in response to changes in temperature or ionic strength. Here, we determined its solution structure and dynamic properties and mapped H-NS binding sites. Cnu consists of three alpha helices that are comparable with those of Hha, but it has significant flexibility in the C-terminal region and lacks a short alpha helix present in Hha. Upon increasing ionic strength, the helical structure of Cnu is destabilized, especially at the ends of the helices. The dominant H-NS binding sites, located at helix 3 as in Hha, reveal a common structural platform for H-NS binding. Our results may provide structural and dynamic bases for the similarity and dissimilarity between Cnu and Hha functions.  相似文献   

3.
In enteric bacteria, proteins of the Hha/YmoA family play a role in the regulation of gene expression in response to environmental factors. Interaction of both Hha and YmoA with H-NS has been reported, and an Hha/H-NS complex has been shown to modulate expression in Escherichia coli of the haemolysin operon of plasmid pHly152. In addition to the hns gene, the chromosome of E. coli and other enteric bacteria also includes the stpA gene that encodes the StpA protein, an H-NS paralogue. We report here the identification of the Hha paralogue in E. coli, the YdgT protein. As Hha paralogue, YdgT appears to fulfil some of the functions reported for StpA as H-NS paralogue: YdgT is overexpressed in hha mutants and can compensate, at least partially, some of the hha-induced phenotypes. We also demonstrate that YdgT interacts both with H-NS and with StpA. Protein cross-linking studies showed that YdgT/H-NS heteromeric complexes are generated within the bacterial cell. The StpA protein, which is subjected to Lon-mediated turnover, was less stable in the absence of Hha or YdgT. Our findings suggest that Hha, YdgT and StpA may form complexes in vivo.  相似文献   

4.
5.
6.
7.
Escherichia coli nucleoid-associated H-NS protein interacts with the Hha protein, a member of a new family of global modulators that also includes the YmoA protein from Yersinia enterocolitica. This interaction has been found to be involved in the regulation of the expression of the toxin alpha-hemolysin. In this study, we further characterize the interaction between H-NS and Hha. We show that the presence of DNA in preparations of copurified His-Hha and H-NS is not directly implicated in the interaction between the proteins. The precise molecular mass of the H-NS protein retained by Hha, obtained by mass spectrometry analysis, does not show any posttranslational modification other than removal of the N-terminal Met residue. We constructed an H-NS-His recombinant protein and found that, as expected, it interacts with Hha. We used a Ni(2+)-nitrilotriacetic acid agarose method for affinity chromatography copurification of proteins to identify the H-NS protein of Y. enterocolitica. We constructed a six-His-YmoA recombinant protein derived from YmoA, the homologue of Hha in Y. enterocolitica, and found that it interacts with Y. enterocolitica H-NS. We also cloned and sequenced the hns gene of this microorganism. In the course of these experiments we found that His-YmoA can also retain H-NS from E. coli. We also found that the hns gene of Y. enterocolitica can complement an hns mutation of E. coli. Finally, we describe for the first time systematic characterization of missense mutant alleles of hha and truncated Hha' proteins, and we report a striking and previously unnoticed similarity of the Hha family of proteins to the oligomerization domain of the H-NS proteins.  相似文献   

8.
In this study we report on an experimental method based on dielectrophoretic analysis to identify changes in four Escherichia coli isogenic strains that differed exclusively in one mutant allele. The dielectrophoretic properties of wild-type cells were compared to those of hns, hha, and hha hns mutant derivatives. The hns and hha genes code respectively for the global regulators Hha and H-NS. The Hha and H-NS proteins modulate gene expression in Escherichia coli and other Gram negative bacteria. Mutations in either hha or hns genes result in a pleiotropic phenotype. A two-shell prolate ellipsoidal model has been used to fit the experimental data, obtained from dielectrophoresis measurements, and to study the differences in the dielectric properties of the bacterial strains. The experimental results show that the mutant genotype can be predicted from the dielectrophoretic analysis of the corresponding cultures, opening the way to the development of microdevices for specific identification. Therefore, this study shows that dielectrophoresis can be a valuable tool to study bacterial populations which, although apparently homogeneous, may present phenotypic variability.  相似文献   

9.
The Escherichia coli protein Hha is a temperature- and osmolarity-dependent modulator of the expression of the hemolysin operon. The Hha protein was purified and its DNA-binding properties analyzed. Hha binds in a non-specific manner throughout the upstream regulatory region of the hemolysin operon in the recombinant hemolytic plasmid pANN202-312. A search for interacting proteins revealed that Hha interacts with H-NS. DNA-binding studies showed that, in vitro, Hha and H-NS together form a complex with DNA that differs from those formed with either protein alone. These data, together with the effects of hha and hns mutations on the expression of the hemolysin genes, suggest that in vivo H-NS and Hha form a nucleoid-protein complex that accounts for the thermo-osmotic regulation of the hemolysin operon in E. coli. Received. 18 October 1999 / Accepted: 21 December 1999  相似文献   

10.
11.
Cordeiro TN  Garcia J  Pons JI  Aznar S  Juárez A  Pons M 《FEBS letters》2008,582(20):3139-3144
In this study, we report that a single mutation of cysteine 18 to isoleucine (C18I) in Escherichia coli Hha abolishes the repression of the hemolysin operon observed in the wild-type protein. The phenotype also includes a significant decrease in the growth rate of E. coli cells at low ionic strength. Other substitutions at this position (C18A, C18S) have no observable effects in E. coli growth or hemolysin repression. All mutants are stable and well folded and bind H-NS in vitro with similar affinities suggesting that Cys 18 is not directly involved in H-NS binding but this position is essential for the activity of the H-NS/Hha heterocomplexes in the regulation of gene expression.  相似文献   

12.
We probed the complex between the replication origin, oriC , and the initiator protein DnaA using different types of mutations in the five binding sites for DnaA, DnaA boxes R1–R4 and M: (i) point mutations in individual DnaA boxes and combinations of them; (ii) replacement of the DnaA boxes by a scrambled 9 bp non-box motif; (iii) positional exchange; and (iv) inversion of the DnaA boxes. For each of the five DnaA boxes we found at least one type of mutation that resulted in a phenotype. This demonstrates that all DnaA boxes in oriC have a function in the initiation process. Most mutants with point mutations retained some origin activity, and the in vitro DnaA-binding capacity of these origins correlated well with their replication proficiency. Inversion or scrambling of DnaA boxes R1 or M inactivated oriC -dependent replication of joint replicons or minichromosomes under all conditions, demonstrating the importance of these sites. In contrast, mutants with inverted or scrambled DnaA boxes R2 or R4 could not replicate in wild-type hosts but gave transformants in host strains with deleted or compromised chromosomal oriC at elevated DnaA concentrations. We conclude that these origins require more DnaA per origin for initiation than does wild-type oriC . Mutants in DnaA box R3 behaved essentially like wild-type oriC , except for those in which the low-affinity box R3 was replaced by the high-affinity box R1. Apparently, initiation is possible without DnaA binding to box R3, but high-affinity DnaA binding to DnaA box R3 upsets the regulation. Taken together, these results demonstrate that there are finely tuned DnaA binding requirements for each of the individual DnaA boxes for optimal build-up of the initiation complex and replication initiation in vivo  相似文献   

13.
14.
The Hha/YmoA nucleoid-associated proteins help selectively silence horizontally acquired genetic material, including pathogenicity and antibiotic resistance genes and their maintenance in the absence of selective pressure. Members of the Hha family contribute to gene silencing by binding to the N-terminal dimerization domain of H-NS and modifying its selectivity. Hha-like proteins and the H-NS N-terminal domain are unusually rich in charged residues, and their interaction is mostly electrostatic-driven but, nonetheless, highly selective. The NMR-based structural model of the complex between Hha/YmoA and the H-NS N-terminal dimerization domain reveals that the origin of the selectivity is the formation of a three-protein charge zipper with interdigitated complementary charged residues from Hha and the two units of the H-NS dimer. The free form of YmoA shows collective microsecond-millisecond dynamics that can by measured by NMR relaxation dispersion experiments and shows a linear dependence with the salt concentration. The number of residues sensing the collective dynamics and the population of the minor form increased in the presence of H-NS. Additionally, a single residue mutation in YmoA (D43N) abolished H-NS binding and the dynamics of the apo-form, suggesting the dynamics and binding are functionally related.  相似文献   

15.
Two distinct regions in the replication origin, oriC, of Escherichia coli are separately distorted upon initiation complex formation by the initiator protein DnaA. The AT-rich region in the left part of oriC and the start site region in the right part of oriC. Chemical modification of single-stranded DNA was observed at both regions whereas endonuclease recognition of DNA mini-bulges specifically occurred in the start site region. We show that the helical phasing of binding sites for DnaA protein in oriC is important for origin function. An insertion or deletion of one helical turn between the two rightmost binding sites does not alter the efficiency of replication initiation, whereas all modifications of distance by less or more than one helical turn result in inactivation of oriC. DnaA binding and helical distortions in the AT-rich region as well as in the start site region are not affected in the distance mutants irrespective of their functionality in vivo. We propose a specific compact nucleoprotein structure for the initiation complex.  相似文献   

16.
Escherichia coli DnaA protein initiates DNA replication from the chromosomal origin, oriC, and regulates the frequency of this process. Structure-function studies indicate that the replication initiator comprises four domains. Based on the structural similarity of Aquifex aeolicus DnaA to other AAA+ proteins that are oligomeric, it was proposed that Domain III functions in oligomerization at oriC (Erzberger, J. P., Pirruccello, M. M., and Berger, J. M. (2002) EMBO J. 21, 4763-4773). Because the Box VII motif within Domain III is conserved among DnaA homologues and may function in oligomerization, we substituted conserved Box VII amino acids of E. coli DnaA with alanine by site-directed mutagenesis to examine the role of this motif. All mutant proteins are inactive in initiation from oriC in vivo and in vitro, but they support RK2 plasmid DNA replication in vivo. Thus, RK2 requires only a subset of DnaA functions for plasmid DNA replication. Biochemical studies on a mutant DnaA carrying an alanine substitution at arginine 281 (R281A) in Box VII show that it is inactive in in vitro replication of an oriC plasmid, but this defect is not from the failure to bind to ATP, DnaB in the DnaB-DnaC complex, or oriC. Because the mutant DnaA is also active in the strand opening of oriC, whereas DnaB fails to bind to this unwound region, the open structure is insufficient by itself to load DnaB helicase. Our results show that the mutant fails to form a stable oligomeric DnaA-oriC complex, which is required for the loading of DnaB.  相似文献   

17.
18.
The Hha protein belongs to a new family of regulators involved in the environmental regulation of virulence factors. The aim of this work was to study the effect of the hha mutation on the overall protein pattern of Escherichia coli cells by two-dimensional polyacrylamide gel electrophoresis. The growth medium osmolarity clearly influenced the effect of the hha mutation. The number of proteins whose expression was altered in hha cells, compared with wild-type cells, was three times larger at a high osmolarity than at a low osmolarity. Among the proteins whose expression was modified by the hha allele, both OmpA and protein IIAGlc of the phosphotransferase system could be identified. As this latter enzyme participates in the regulation of the synthesis of cyclic AMP and hence influences the catabolite repression system, we tested whether the expression of the lacZ gene was also modified in hha mutants. This was the case, suggesting that at least some of the pleiotropic effects of the hha mutation could be caused by its effect on the catabolite repression system.  相似文献   

19.
The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein–DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein–DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.  相似文献   

20.
IHF (integration host factor) mutants exhibit asynchronous initiation of chromosome replication from oriC as determined from flow cytometric analysis of cultures where RNA synthesis was inhibited with rifampicin. However, the run-out kinetics of chromosome replication in ihf mutants shows that they continue to produce oriCs for some time in the absence of RNA synthesis resulting in a twofold increase in the oriC per mass ratio. An ihf dnaA double mutant did not exhibit this continued increase of the oriC per mass ratio. This indicates that ihf mutants can initiate replication from oriC in a rifampicin-resistant initiation mode but requires fully functional DnaA protein. The origin per mass ratio, determined by a quantitative Southern blotting technique, showed that the ihf mutants had an origin per mass ratio that was 60% of the wild type although it had a normal DnaA protein concentration. This shows that the initiation mass was substantially higher in the ihf mutants. The oriC per terminus ratio, which was also determined by Southern blotting, was very low in the ihf mutant, although it grew with the same doubling times as the wild-type strain. This indicates that cells lacking IHF replicate their chromosome(s) very fast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号