首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic membranes, obtained by immobilizing thermophilic beta-glycosidase onto nylon supports, were used in a nonisothermal bioreactor to study the effect of temperature gradients on the rate of enzyme reaction. Two experimental approaches were carried out to explain the molecular mechanisms by which the temperature gradients affect enzyme activity. The results showed that the thermophilic enzyme behaved as the mesophilic beta-galactosidase, exhibiting an activity increase which was linearly proportional to the transmembrane temperature difference. The efficiency of the system proposed was determined by calculating two constants, alpha and beta, which represent respectively the percentage increase of enzyme activity when a temperature difference of 1 degrees C or a temperature gradient of 1 degrees C cm-1 were applied across the catalytic membrane. The increase of enzyme activity in nonisothermal bioreactors entailed a proportional reduction of production times. The advantages in using thermophilic enzymes immobilized in nonisothermal bioreactors are also discussed.  相似文献   

2.
Laccase from Trametes versicolor was immobilized by diazotization on a nylon membrane grafted with glycidil methacrylate, using phenylenediamine as spacer and coupling agent. The behavior of these enzyme derivatives was studied under isothermal and nonisothermal conditions by using syringic acid as substrate, in view of the employment of these membranes in processes of detoxification of vegetation waters from olive oil mills. The pH and temperature dependence of catalytic activity under isothermal conditions has shown that these membranes can be usefully employed under extreme pH and temperatures. When employed under nonisothermal conditions, the membranes exhibited an increase of catalytic activity linearly proportional to the applied transmembrane temperature difference. Percentage activity increases ranging from 62% to 18% were found in the range of syringic acid concentration from 0.02 to 0.8 mM, when a difference of 1 degrees C was applied across the catalytic membrane. Because the percentage activity increase is strictly related to the reduction of the production times, the technology of nonisothermal bioreactors has been demonstrated to be an useful tool also in the treatment of vegetation waters from olive oil mills.  相似文献   

3.
A novel packed-bed bioreactor, operating under isothermal and non-isothermal conditions, has been constructed. The core of the apparatus consisted in a polypropylene ring filled with beta-galactosidase immobilized on beads of polyacrylic acid, grafted with dimethylaminoethyl methacrylate. Phenylendiamine and glutaraldehyde were used as spacer and coupling agent, respectively. Two lateral nylon membranes held the enzyme beads into the ring and allowed the occurrence of the process of thermodialysis when the bioreactor was operating under non-isothermal conditions. Comparison of the enzyme activity under isothermal and non-isothermal conditions has shown that in the presence of temperature gradients the rate of lactose hydrolysis was increased, with a reduction of the apparent Km value. Under non-isothermal conditions the percentage increases of enzyme activity were found to decrease with the increase of the substrate concentration. The results have been explained within the frame of reference of the process of thermodialysis.  相似文献   

4.
β-Galactosidase has been immobilised through spacers of different length on nylon membranes grafted with glycidyl methacrylate. Hexamethylendiamine, ethylendiamine or hydrazine have been separately used as spacers.

The behaviour of the catalytic membranes has been studied in a bioreactor operating under non-isothermal conditions as a function of the applied temperature difference ΔT.

Comparison of the enzyme reaction rates under isothermal and non-isothermal conditions resulted in percentage activity increases (PAI) and reduction of the production time (τr) proportional to the size of the applied ΔT. Both these parameters increased with the increase of the spacer length.

Results have been discussed in the frame of reference of the process of thermodialysis which reduces the limitations to the diffusion of substrate and reaction products across the catalytic membrane, limitations introduced by the grafting and immobilisation process.

The advantages of employing non-isothermal bioreactors in biotechnological productive processes have been outlined.  相似文献   


5.
Laccase from Rhus vernicifera was immobilized on a polypropylene membrane chemically modified with chromic acid. Ethylenediamine and glutaraldehyde were used as spacer and bifunctional coupling agent, respectively. Phenol was used as substrate.To know how the immobilization procedures affected the enzyme reaction rate the catalytic behavior of soluble and insoluble laccase was studied under isothermal conditions as a function of pH, temperature and substrate concentration. From these studies, two main singularities emerged: (i) the narrower pH–activity profile of the soluble enzyme in comparison to that of the insoluble counterpart and (ii) the increase in pH and thermal stability of the insoluble enzyme.The laccase catalytic behavior was also studied in a non-isothermal bioreactor as a function of substrate concentration and size of the applied transmembrane temperature difference. It was found that, under non-isothermal conditions and keeping constant the average temperature of the bioreactor, the enzyme reaction rate linearly increased with the increase of the temperature difference.  相似文献   

6.
The effect of the immobilization time on the activity of immobilized beta-galactosidase from K. lactis was investigated. Six biocatalytic membranes, different only for the time of the enzyme immobilization, were obtained by using nylon membranes grafted with glycidyl methacrylate (GMA) and activated by hexamethylenediamine (HMDA) and glutaraldehyde (Glu), used as spacer and coupling agent, respectively. Comparison between the isothermal and nonisothermal yield of these biocatalytic membranes was carried out in the process of lactose hydrolysis in milk. All of the results, reported as a function of the immobilization time, have evidenced the influence of our variable parameter on the activity of the catalytic membranes. The membrane giving highest yield under isothermal and nonisothermal conditions was that obtained with 2 h of immobilization time. The industrial application of these membranes has been discussed in terms of percentage reduction of the production times.  相似文献   

7.
The flux ratio of potassium ions was measured on frog sartorius muscle under conditions in which a substantial net potassium loss occurs. Muscle fiber membrane potentials were measured under identical conditions. The observed flux ratios were compared with values calculated from a theoretical relation derived on the assumptions that the unidirectional fluxes are both passive and occur independently. The results favor the conclusion that the potassium fluxes across skeletal muscle membrane occur along passive electrochemical gradients and obey the independence principle.  相似文献   

8.
The effect of thermodialysis on the enzymatic kinetic synthesis of the antibiotic cephalexin was investigated. As reference points, two existing models for an immobilised enzyme (Assemblase®) and for the free enzyme were used. For Assemblase®, it is known that diffusion limitation occurs and that therefore considerably more of the undesired side-product phenylglycine is formed.

The enzyme was immobilised on a membrane, and under isothermal conditions (293 K) the course of the reaction resembled that of the Assemblase® enzyme. However, if a temperature gradient was applied across the membrane, with an average temperature of 293 K for the enzyme, than the course of the reaction changed. For large temperature gradients (30° and more), the course of the reaction resembled that of free enzyme. Thermodialysis enhances mass transfer across the membrane and therewith reduces diffusion limitations in the immobilised enzyme on the membrane.

The stability of the immobilised enzyme is such that the reactor can be re-used repeatedly. This, together with the positive effect of the temperature gradient on the course of the reaction, makes thermodialysis an interesting new technique that has potential to be applied on a larger scale if the membrane surface area per volume of reactor can be improved.  相似文献   


9.
Lactose hydrolysis by β-galactosidase immobilized on two nylon membranes, differently grafted, has been studied in a bioreactor operating under isothermal and non-isothermal conditions. One membrane (M1) was obtained by chemical grafting of methylmethacrylate (MAA); the other one (M2) by a double chemical grafting: styrene (Sty) and MAA. Hexamethylenediamine was used as a spacer between the grafted membranes and the enzyme. Both membranes have been physically characterized studying their permeabilities in presence of pressure or temperature gradients. Under non-isothermal conditions, the increase in activity of membrane M2 was higher than that of membrane M1. The and β coefficients, giving the percentage of activity increase when a temperature difference of 1°C is applied across the catalytic membranes, have been calculated. Results have been discussed with reference to the greater hydrophobicity of membrane M2 with respect to membrane M1, the hydrophobicity being a prerequisite for the occurrence of the process of thermodialysis.  相似文献   

10.
A new catalytic membrane has been prepared using a nylon membrane grafted by γ-radiation with methylmethacrylate (MMA) and using hexamethylenediamine (HMDA) as spacer. Penicillin G acylase (PGA) and cephalexin were employed as catalyst and substrate, respectively. Cephalexin hydrolysis was studied in bioreactors operated under isothermal and non-isothermal conditions. A hydrolysis increase was found when the temperature of the warm membrane surface was kept constant and the temperature of the other membrane surface was kept at a lower value. The hydrolysis increase was linearly proportional to the applied temperature difference. Cephalexin hydrolysis increased to about 10% when a temperature difference of 1°C was applied across the catalytic membrane. These results have been attributed to the non-isothermal cephalexin transport across the membrane, i.e., to the process of thermodialysis. In this way, the enzyme immobilized on and into the membrane reacts with a substrate concentration higher than that produced by simple diffusion under isothermal conditions.  相似文献   

11.
Laccase from Rhus vernicifera was immobilised on a nylon membrane chemically grafted with glycidyl methacrylate (GMA). Hexamethylenediamine (HMDA) and glutaraldehyde (GLU) were used as spacer and bifunctional coupling agent, respectively. Quinol was used as substrate.

To know how the immobilisation procedures affected the enzyme reaction rate the catalytic behaviour of soluble and insoluble laccase was studied under isothermal conditions as a function of pH, temperature and substrate concentration. From these studies, two main singularities emerged from the experimental data: (i) the narrower pH-activity profile of the insoluble enzyme in comparison to that of the soluble counterpart; (ii) the increase of the affinity of the immobilised enzyme for its substrate.

The behaviour of the catalytic membrane was also studied in a non-isothermal bioreactor as a function of substrate concentration and size of the applied transmembrane temperature difference. It was found that, under non-isothermal conditions and keeping constant the average temperature of the bioreactor, the enzyme reaction rate linearly increases with the increase of the temperature difference. These results have been discussed in the frame of reference of the process of thermodialysis driving thermodiffusive transmembrane substrate fluxes, which add to the diffusive ones.

The advantages of the catalytic process carried out under non-isothermal conditions have been thrown in relief through the evaluation of the reduction of the production times and of the percentage increases of the enzyme activity.  相似文献   


12.
Aims:  To design and build a thermoresistometer, named Mastia, which could perform isothermal and nonisothermal experiments.
Methods and Results:  In order to evaluate the thermoresistometer, the heat resistance of Escherichia coli vegetative cells and Alicyclobacillus acidoterrestris spores was explored. Isothermal heat resistance of E. coli was characterized by D 60°C = 0·38 min and z =  4·7°C in pH 7 buffer. When the vegetative cells were exposed to nonisothermal conditions, their heat resistance was largely increased at slow heating and fast cooling rates. Isothermal heat resistance of A. acidoterrestris was characterized by D 95°C = 7·4 min and z =  9·5°C in orange juice. Under nonisothermal conditions, inactivation was reasonably well predicted from isothermal data.
Conclusions:  The thermoresistometer Mastia is a very suitable instrument to get heat resistance data of micro-organisms under isothermal and nonisothermal treatments.
Significance and Impact of the Study:  The thermoresistometer Mastia can be a helpful tool for food processors in order to estimate the level of safety of the treatments they apply.  相似文献   

13.
Water Vapour and Heat Transfer in Leaves   总被引:2,自引:0,他引:2  
SHERIFF  D. W. 《Annals of botany》1979,43(2):157-171
Factors connected with the formation of water droplets in leavesby distillation from the mesophyll to the epidermis were investigatedin a number of species. It was concluded that in illuminatedleaves water droplets form principally on the inner walls ofguard and subsidiary cells, and sometimes below the anticlinalwalls of epidermal cells, because these sites are cooler thanthe rest of the leaf. Under more isothermal conditions any waterdroplets that had formed disappeared. With increasing waterstress water droplets did not form so readily, though distillationwas occurring. Few water droplets were observed in leaves outof doors that had open stomata. Significant temperature gradientswere measured across leaves with thermocouples, but these werelarger than were gradients calculated from measured thermalconductivities of leaves. The evaporation resistances of theinner walls of the epidermis and of the mesophyll were foundto be similar. This led to the conclusion that the hydrophobicityof the surfaces of these tissues is similar. Water transferin leaves in the vapour phase was found to be more responsiveto temperature than to water stress gradients. leaf, evaporation, distillation, heat loss, transpiration  相似文献   

14.
Thermodiffusive transport of trace elements that play important roles in living organisms, such as molybdenum, nickel, copper, and vanadium, was studied in a nonisothermal biphasic system comprised of a liquid solution and jelly layers. Our intent was to mimic the effects of temperature gradients on prebiological evolution. Conditions were found, similar to those probably existing during development of early eobionts, under which all the elements tested were concentrated within the heated jelly. Nonisothermal matter transport through grossly porous artificial membranes--the process of thermodialysis--was next investigated to assess the behavior of compartmentalized, i.e., membrane bound, eobionts. Particular interest was dedicated to the continuity of nonisothermal transport phenomena in the homogeneous and heterogeneous (membrane) systems and to the ability of compartmentalized eobionts to withstand osmotic swelling by means of thermoosmotic transport. Interestingly enough, under the experimental conditions adopted, sodium/potassium countertransport is also found, suggesting a very early physicochemical origin of the sodium-potassium pump. Surprisingly enough, evidence of teleonomic behavior appears in those very simple analogs of prebiological systems.  相似文献   

15.
The results obtained with a glucose biosensor operating under non-isothermal conditions are presented and discussed. Glucose oxidase, immobilized onto Nylon membranes, was used as biological element. An amperometric two electrodes system was employed to measure the anodic current produced by oxidation of hydrogen peroxide. Non-isothermal conditions were characterised in terms of the temperature difference, delta T = Tw - Tc, and of the average temperature of the system, Tav = (Tw + Tc)/2, Tw and Tc being the temperature in the warm and cold half-cells constituting the biosensor. Comparison between the functioning of the biosensor under isothermal and non-isothermal conditions was performed. It was found that, under non-isothermal conditions, the dynamic response and sensitivity increased, while the response times and the detection limit decreased, if comparison was done with the same parameters measured under isothermal conditions. The increase of the dynamic response was found to be proportional to the applied temperature gradient.  相似文献   

16.
Heat denaturation kinetics of Bacillus licheniformis alpha-amylase, equilibrated at 81% equilibrium relative humidity at 4 degrees C (BLA81), was studied with help of isothermal and nonisothermal conditions by monitoring the decrease in enthalpy associated with the heat denaturation of the enzyme. Due to its low water content, BLA81 denaturation could be studied in the range of 118-124 degrees C. Two batches of BLA81 were successfully validated under nonisothermal conditions allowing the determinations of process values (reference temperature of 121.1 degrees C) in the range of 1-15 min. In a second step, BLA81 was used as a time-temperature integrator (TTI) to investigate potential differences of process values received by freely moving spherical particles as compared to a centrally fixed particle (single-position impact) inside cans containing water as brine. Results showed that the process value received by freely moving particles can be from 5.6% (4 rpm) to 19.7% (8 rpm) smaller than the process value received by the centrally fixed sphere. This means that evaluating the process value by means of a particle fixed at the critical point in a package can lead to potentially overestimations of the actual process value with possible hazardous quality/safety implications. These results highlight the potentials of the TTI technology to monitor the safety of heat-processed agitated solid/liquid foodstuffs.  相似文献   

17.
Thermodiffusive transport of trace elements that play important roles in living organisms, such as molybdenum, nickel, copper, and vanadium, was studied in a nonisothermal biphasic system comprised of a liquid solution and jelly layers. Our intent was to mimic the effects of temperature gradients on prebiological evolution. Conditions were found, similar to those probably existing during development of early eobionts, under which all the elements tested were concentrated within the heated jelly. Nonisothermal matter transport through grossly porous artificial membranes—the process of thermodialysis—was next investigated to assess the behavior of compartmentalized, i.e., membrane bound, eobionts. Particular interest was dedicated to the continuity of nonisothermal transport phenomena in the homogeneous and heterogeneous (membrane) systems and to the ability of compartmentalized eobionts to withstand osmotic swelling by means of thermoosmotic transport. Interestingly enough, under the experimental conditions adopted, sodium/potassium countertransport is also found, suggesting a very early physicochemical origin of the sodium-potassium pump. Surprisingly enough, evidence of teleonomic behavior appears in those very simple analogs of prebiological systems.  相似文献   

18.
Sex-specific plasticity in body size has been recently proposed to cause intraspecific patterns of variation in sexual size dimorphism (SSD). We reared juvenile male and female Mediterranean tarantulas (Lycosa tarantula) under two feeding regimes and monitored their growth until maturation. Selection gradients calculated across studies show how maturation size is under net stabilizing selection in females and under directional selection in males. This pattern was used to predict that body size should be more canalized in females than in males. As expected, feeding affected male but not female maturation size. The sex-specific response of maturation size was related to a dramatic divergence between subadult male and female growth pathways. These results demonstrate the existence of sex-specific canalization and resource allocation to maturation size in this species, which causes variation in SSD depending on developmental conditions consistent with the differential-plasticity hypothesis explaining Rensch's Rule.  相似文献   

19.
AIMS: To develop a method to calculate and record theoretical microbial survival curves during thermal processing of foods and pharmaceutical products simultaneously with the changing temperature. Moreover, to demonstrate that the method can be used to calculate nonisothermal survival curves, with widely available software such as Microsoft Excel. METHODS AND RESULTS: It has been assumed that the targeted organism's isothermal survival curves are not log linear and hence, the inactivation rate in nonisothermal processes is a function of the momentary temperature and the corresponding survival ratio. This could be expressed by a difference equation, which is an approximation to the continuous rate model. The concept was tested with the isothermal survival parameters of Clostridium botulinum and Bacillus sporothermodurans spores, and Salmonella enteritidis cells, using different kinds of survival models and under temperature profiles resembling those of commercial processes. As expected, there was an excellent agreement between the curves produced by solving the differential equation of the continuous model and by the incremental method, which has been posted on the web as freeware. CONCLUSIONS: It is possible to calculate nonisothermal survival curves, in real time, with an algorithm that can be written in the language of general purpose software, to follow the inactivation of one or more targeted organisms simultaneously and to simulate microbial survival patterns under existing or planned industrial thermal processes. SIGNIFICANCE AND IMPACT OF THE STUDY: Replacement of the traditional 'F0-value', which requires the log linearity of the organism's isothermal survival curves, by the more realistic theoretical survival ratio estimate as a measure of the thermal process efficacy.  相似文献   

20.
AIMS: The aim was to assess the induced thermotolerance under nonisothermal treatments of two strains of Staphylococcus aureus in media of different pH. METHODS AND RESULTS: Staphylococcus aureus ATCC 25923 was more heat resistant than S. aureus ATCC 13565 at any pH investigated under isothermal conditions. At pH 7.4, the D58 value of the resistant strain was approx. 30 times greater. Both strains showed a higher heat resistance at pH 4.0 than at pH 7.4. In contrast, under nonisothermal treatments (0.5-2 degrees C min(-1)), both strains were more heat resistant when treated at pH 7.4 than at pH 4.0 due to heat adaptation at the higher pH. At the slowest heating up rate tested at pH 7.4, the initially heat-sensitive strain nearly reached the thermotolerance of the heat-resistant strain. CONCLUSIONS: The induced thermotolerance under nonisothermal treatments depended on the treatment medium pH and the microbial strain tested. The induced thermotolerance in a sensitive strain can be greater than in a heat-resistant strain, showing similar resistance under nonisothermal conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This work shows data of interest about mechanisms of microbial resistance and adaptation to heat. Moreover, it contributes to the development of more adequate combined processes for food preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号