首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Nuclear disruption in T4 phage-infected Escherichia coli as well as the morphology of the nuclear regions in uninfected E. coli can be observed by phase microscopy of cells spread on a thin layer of 17.5% gelatin. We have used this procedure to identify for the first time mutants of phage T4 which fail to induce nuclear disruption. The mutant phenotypes have been further characterized by thin-section electron microscopy.Nuclear disruption is not essential for phage growth. Burst-size and growth-rate experiments indicate that the nuclear disruption-deficient (ndd) mutants grow as well as wild-type T4D under the conditions and in the E. coli strains commonly used in our laboratory.Mapping experiments using multiple amber mutants and rII mutants with deletions extending into the D region adjacent to the rIIB gene indicate that the ndd mutations are located in gene D2b.  相似文献   

2.
A recombinant strain (D41) between phage T2 and T4 was isolated which possessed the T2 region of the genome between genes 32 and 39 and both the T4 genesgt + andgt + for glucosyltransferase. D41 was crossed with T4amber mutants in the genes for early functions and in some genes for late funcitions. The progeny of the crosses was examined for the frequency of theam + markers from D41. Genes 32, 60 and 39 in the T2 region of the recombinant strain were as sensitive to exclusion as those in standard-type T2. The T4 glucosylation of the DNA of these T2 genes did not protect them against partial exclusion by T4. However, genes in the region from gene 56 to 55 in the recombinant were resistent to exclusion. In standard-type T2 this region of the genome is sensitive to partial exclusion by T4. There are at least four exclusion sensitive sites in T2: one near gene 32, one near gene 60, one linked to gene 56 and one between genes 42 and 55.This investigation was carried out partially within the frame of the Association between Euratom and the University of Leiden, contract nr. 052-64-1-BIAN.  相似文献   

3.
Studies of Mutations in T4 Control Genes 33 and 55   总被引:2,自引:0,他引:2       下载免费PDF全文
H. Robert Horvitz 《Genetics》1975,79(3):349-360
  相似文献   

4.
Selective Allele Loss in Mixed Infections with T4 Bacteriophage   总被引:11,自引:4,他引:7       下载免费PDF全文
Evidence is presented that when E. coli B is mixedly infected with T4D wild type and rII deletion mutants, the excess DNA of the wild type allele is lost. No loss is seen in mixed infections with rII point mutants and wild type. In similar experiments with lysozyme addition mutants, the mutant allele is lost. We believe these results demonstrate a repair system which removes "loops" in heteroduplex DNA molecules. A number of phage and host functions have been tested for involvement in the repair of the excess DNA, and T4 genes x and v have been implicated in this process.  相似文献   

5.
Sixteen conditional lethal mutants of bacteriophage T4D have been isolated which grow on Escherichia coli CR63 (a su+ streptomycin-sensitive K12 strain) but are restricted by CR/s (a streptomycin-resistant derivative of CR63). These mutants have been given the prefix str. Four of these mutants are amber and 12 appear to be missense. Eleven of the 12 missense mutants appear to be "pseudo-amber" (i.e. they are restricted by a su- E. coli B strain but not by a su- K12 strain); the other missense mutant was not restricted by either B or K12. The str mutations mapped in 12 different genes. Most were clustered in a region of early genes (gene 56 to gene 47). Fifty-eight amber and 10 "pseudo-amber" mutants isolated previously for their inability to grow on E. coli B were tested for restriction by CR/s. All the amber mutants grew normally on CR/s, whereas all 10 "pseudo-amber" mutants were restricted by CR/s. This implies that the phenotype of the "pseudo-amber" mutants is the result of a ribosomal difference between the permissive host CR63 and the restrictive hosts B and CR/s. These str mutants should prove to be useful alternatives to amber mutants for genetic and biochemical studies of bacteriophage T4 and for studies of the E. coli ribosome. It should be possible ot isolate similar mutants in other bacteriophages provided that streptomycin resistant hosts are available.  相似文献   

6.
Previous studies on the selection of bacteriophage T4 mutator mutants have been extended and a method to regulate the mutator activity of DNA polymerase mutator strains has been developed. The nucleotide changes of 17 bacteriophage T4 DNA polymerase mutations that confer a mutator phenotype and the nucleotide substitutions of several other T4 DNA polymerase mutations have been determined. The most striking observation is that the distribution of DNA polymerase mutator mutations is not random; almost all mutator mutations are located in the N-terminal half of the DNA polymerase. It has been shown that the T4 DNA polymerase shares several regions of homology at the protein sequence level with DNA polymerases of herpes, adeno and pox viruses. From studies of bacteriophage T4 and herpes DNA polymerase mutants, and from analyses of similar protein sequences from several organisms, we conclude that DNA polymerase synthetic activities are located in the C-terminal half of the DNA polymerase and that exonucleolytic activity is located nearer the N terminus.  相似文献   

7.
The DNA polymerase of bacteriophage T4 is a multifunctional enzyme that harbors DNA-binding, DNA-synthesizing and exonucleolytic activities. We have cloned in bacterial plasmids about 99% of the structural gene for this enzyme (T4 gene 43). The gene was cloned in six contiguous 5'-terminal DNA fragments that defined seven intragenic mapping regions. Escherichia coli hosts harboring recombinant plasmids carrying the gene 43 subsegments were used in marker-rescue experiments that assigned a large number of ts and nonsense polymerase mutations to different physical domains of the structural gene. Conspicuously, only one missense mutation in a large collection of mutants mapped in the 5'-terminal 450 base-pair segment of the approximately 2700 base-pair gene. To test if this indicated a DNA polymerase domain that is relatively noncritical for biological activity, we mutagenized a recombinant plasmid carrying this 5'-terminal region and generated new conditional-lethal mutations that mapped therein. We identified five new ts sites, some having mutated at high frequency (nitrosoguanidine hot spots). New ts mutations were also isolated in phage genes 62 and 44, which map upstream of gene 43 on the T4 chromosome. A preliminary examination of physiological consequences of the ts gene 43 mutations showed that they exhibit effects similar to those of ts lesions that map in other gene 43 segments: some were mutators, some derepressed gene 43 protein synthesis and they varied in the severity of their effects on T4-induced DNA synthesis at nonpermissive temperatures. The availability of the gene 43 clones should make it possible to isolate a variety of lesions that affect different activities of the T4 DNA polymerase and help to define the different domains of this multifunctional protein.  相似文献   

8.
Mutants of bacteriophage T4 which exhibit increased sensitivity to ultraviolet radiation specifically at high temperature were isolated after mutagenesis with hydroxylamine. At 42 °C the mutants are twice as sensitive to ultraviolet light as T4D, whereas at 30 °C they exhibit survival curves almost identical to that of the wild-type strain. Complementation tests revealed that the mutants possess temperature-sensitive mutations in the v gene.Evidence is presented to show that T4 endonuclease V produced by the mutants is more thermolabile than the enzyme of the wild-type. (1) Extracts of cells infected with the mutants were capable of excising pyrimidine dimers from ultraviolet irradiated T4 DNA at 30 °C, but no selective release of dimers was induced at 42 °C. (2) Endonuclease V produced by the mutant was inactivated more rapidly than was the enzyme from T4D-infected cells when the purified enzymes were incubated in a buffer at 42 °C. From these results it is evident that the v gene is the structural gene for T4 endonuclease V, which plays an essential role in the excision-repair of ultraviolet light-damaged DNA.The time of action of the repair endonuclease was determined by using the mutant. Survival of a temperature-sensitive v mutant, exposed to ultraviolet light, increased when infected cells were incubated at 30 °C for at least ten minutes and then transferred to 42 °C. It appears that repair of DNA proceeds during an early stage of phage development.  相似文献   

9.
We have completed the cloning and sequencing of all known temperature-sensitive, amino acid substitution mutants of simian virus 40 large T antigen (tsA mutants). Surprisingly, many of the mutants isolated from distinct viral strains by different laboratories are identical. Thus, 17 independently isolated mutants represent only eight distinct genotypes. This remarkable clustering of tsA mutations in a few "hot spots" in the amino acid sequence of T antigen and the temperature-sensitive phenotypes of the mutations strongly suggest that these amino acids play crucial roles in organizing the structure of one or more functional domains. Most of the mutations are located in highly conserved regions of T antigen that correlate with DNA binding, protein-protein interactions, or ATP binding. With the exception of one mutant with a lesion in the putative ATP-binding region, all the mutants are temperature sensitive for DNA replication.  相似文献   

10.
Summary We have isolated mutants of Escherichia coli B (called TabR) that restrict the growth of bacteriophage T4 rII mutants at high temperature. TabR strains lysed very rapidly after infection with rII mutants, and no progeny phage were produced. T4+-infected TabR cells also lysed quickly, but the cells remained intact long enough to give a small burst. We have selected pseudorevertants of rII deletion mutants that grow on TabR at high temperature; tk (thymidine kinase) is a component of one class of these pseudorevertants.T4 strains harboring mutations in genes 12, 16, 25, 34, 36, 45 and 63 were also specifically restricted on TabR strains at high temperature. Bacteriophages T2, T4, T5, T6, and T7 grew normally on TabR, while , 80, and P1 failed to grow at any temperature. The most restrictive TabR strains were auxotrophic for methionine at high temperature, and most spontaneous Met+ revertants had also lost the ability to restrict rII mutants, suggesting that the TabR phenotype and methionine auxotrophy result from the same mutation.Although the mechanism by which TabR strains exert their restriction has not been determined, one model is described. The potential uses of these and similar strains is discussed.  相似文献   

11.
N4-Aminocytidine, a nucleoside analog, is a potent mutagen towards phages, bacteria, Drosophila and mammalian cells in culture. In vitro, biochemical studies indicate that this reagent acts by being incorporated into DNA. To elucidate the mechanism of N4-aminocytidine mutagenesis, it is essential to identify the nature of DNA sequence alterations taking place during the mutagenesis. We have analyzed the nucleotide sequence changes in the lac promoter-lacZ alpha region of M13mp2 phage induced by treatment of phage-infected Escherichia coli with N4-aminocytidine. The sequence alterations of DNA samples from 89 mutants of the phage were determined. These mutants had single point mutations, except one mutant, in which a double point mutation was detected. Several hot spots were found: however, there are no apparent relations to particular DNA sequences regarding the locations of these spots. All the mutations are transitions; neither transversions nor deletions/insertions were found. A feature in these transitions is that the A/T to G/C and G/C to A/T changes occur at approximately equal rates. The overall picture of the mutagenesis is consistent with a scheme in which misincorporation and misreplication caused by the modified cytosine structure are the key steps in the DNA replication leading to transitions. Similar nucleotide alterations were found for the mutagenesis induced by an alkylated derivative, N'-methyl-N4-aminocytidine. N4-Aminocytidine also induced reversions of these mutants; both A/T to G/C and G/C to A/T transitions again took place.  相似文献   

12.
J R Wu  Y C Yeh    K Ebisuzaki 《Journal of virology》1984,52(3):1028-1031
A genetic study of the T4 dar (DNA arrested synthesis restoration) mutations was performed by two- and three-factor crosses. The dar mutations restore the viability of gene 59 mutants. Mapping studies of the dar mutations indicated that the dar gene extended over 16 map units. This high recombination frequency is attributed to an increased level of recombination in the dar region. Two other mutations, uvsY and uvsW, known to be located in the vicinity of dar, were studied. These studies indicated that the uvsY and dar mutations were located in separate genes but that dar and uvsW were allelic. The genes are ordered as follows: gene 24, dar(uvsW), uvsY, and gene 25 in clockwise order.  相似文献   

13.
Epstein RH  Bolle A  Steinberg CM 《Genetics》2012,190(3):831-832
We have isolated a large number of mutants of bacteriophage T4D that are unable to form plaques on strain B of Escherichia coli, but are able to grow (nearly) normally on some other strains of E. coli, in particular strain CR63. These mutants, designated amber (am), have been characterized by complementation tests, by genetic crosses, and by their response to chemical mutagens. It is concluded that a particular subclass of base substitution mutations may give rise to amber mutants and that such mutants occur in many genes, which are widely distributed over the T4 genome.  相似文献   

14.
15.
Bacillus subtilis mutants with alterations in ribosomal protein S4.   总被引:2,自引:1,他引:1       下载免费PDF全文
Two mutants with different alterations in the electrophoretic mobility of ribosomal protein S4 were isolated as spore-plus revertants of a streptomycin-resistant, spore-minus strain of Bacillus subtilis. The mutations causing the S4 alterations, designated rpsD1 and rpsD2, were located between the argGH and aroG genes, at 263 degrees on the B. subtilis chromosome, distant from the major ribosomal protein gene cluster at 12 degrees. The mutant rpsD alleles were isolated by hybridization using a wild-type rpsD probe, and their DNA sequences were determined. The two mutants contained alterations at the same position within the S4-coding sequence, in a region containing a 12-bp tandem duplication; the rpsD1 allele corresponded to an additional copy of this repeated segment, resulting in the insertion of four amino acids, whereas the rpsD2 allele corresponded to deletion of one copy of this segment, resulting in the loss of four amino acids. The effects of these mutations, alone and in combination with streptomycin resistance mutations, on growth, sporulation, and streptomycin resistance were analyzed.  相似文献   

16.
17.
Secondary structure of the mRNA in the translational initiation region is an important determinant of translation efficiency. However, the secondary structures that enhance or facilitate translation initiation are rare. We have previously proposed that such structure may exist in the case of bacteriophage T4 gene 25 translational initiation region, which contains three potential Shine-Dalgarno sequences (SD1, SD2, and SD3) with a spacing of 8, 17, and 27 nucleotides from the initiation codon of this gene, respectively. We now present results that clearly demonstrate the existence of a hairpin structure that includes SD1 and SD2 sequences and brings the SD3, the most typical of these Shine-Dalgarno sequences, to a favourable spacing with the initiation codon of gene 25.Using a phage T7 expression system, we show that mutations that prevent the formation of hairpin structure or eliminate the SD3 sequence result in a decreased level of gp25 synthesis. Double mutation in base-pair V restores the level of gene 25 expression that was decreased by either of the two mutations (C-to-G and G-to-C) alone, as predicted by an effect attributable to mRNA secondary structure. We introduced the mutations into the bacteriophage T4 by plasmid-phage recombination. Changes in the plaque and burst sizes of T4 mutants, carrying single and double mutations in the translational initiation region of gene 25, strongly suggest that the predicted mRNA secondary structure controls (enhances) the level of gene 25 expression in vivo. Hybridization of total cellular RNA with a gene 25 specific probe indicated that secondary structure or mutations in the translational initiation region do not notably affect the 25 mRNA stability. Immunoblot analysis of gp25 in Escherichia coli cells infected by T4 mutants showed that mRNA secondary structure increases the level of gp25 synthesis by three- to fourfold. Since the secondary structure increases the level of gp25 synthesis and does not affect mRNA stability, we conclude that this structure enhances translation initiation. We discuss some features of two secondary structures in the translational initiation regions of T4 genes 25 and 38.  相似文献   

18.

Background

The inhibitor telaprevir (VX-950) of the hepatitis C virus (HCV) protease NS3-4A has been tested in a recent phase 1b clinical trial in patients infected with HCV genotype 1. This trial revealed residue mutations that confer varying degrees of drug resistance. In particular, two protease positions with the mutations V36A/G/L/M and T54A/S were associated with low to medium levels of drug resistance during viral breakthrough, together with only an intermediate reduction of viral replication fitness. These mutations are located in the protein interior and far away from the ligand binding pocket.

Results

Based on the available experimental structures of NS3-4A, we analyze the binding mode of different ligands. We also investigate the binding mode of VX-950 by protein-ligand docking. A network of non-covalent interactions between amino acids of the protease structure and the interacting ligands is analyzed to discover possible mechanisms of drug resistance. We describe the potential impact of V36 and T54 mutants on the side chain and backbone conformations and on the non-covalent residue interactions. We propose possible explanations for their effects on the antiviral efficacy of drugs and viral fitness. Molecular dynamics simulations of T54A/S mutants and rotamer analysis of V36A/G/L/M side chains support our interpretations. Experimental data using an HCV V36G replicon assay corroborate our findings.

Conclusion

T54 mutants are expected to interfere with the catalytic triad and with the ligand binding site of the protease. Thus, the T54 mutants are assumed to affect the viral replication efficacy to a larger degree than V36 mutants. Mutations at V36 and/or T54 result in impaired interaction of the protease residues with the VX-950 cyclopropyl group, which explains the development of viral breakthrough variants.  相似文献   

19.
The phenotypic characteristics of 26 ptg mutations in T4 gene 23 are described. All were located in three tight clusters in that gene and, by definition of ptg mutations, all produced giant phage. Intermediate petite phage, which invariably made up a substantial fraction of the progeny of these mutants, appeared to be a unique product of gene 23 mutations. Isometric petite phage were produced in significant numbers by strains with mutations at only 4 of the 10 sites identified with the PTG phenotype. The data presented indicate that there was little if any variation in the lengths of the normal, the intermediate petite, and the isometric petite classes. The frequencies of those capsid types were fairly specific for the individual mutations. The giant capsids that resulted from ptg mutations also had characteristic length distributions, of which three types were distinguished. These highly specific effects of gene 23 ptg mutations on capsid length regulation of T4 imply that the product of gene 23, gp23, plays a significant role in controlling the length of its capsid. The restrictions these observations place on a model for T4 capsid length regulation are discussed briefly.  相似文献   

20.
Wild-type bacteriophage T4 was enriched for mutants which fail to degrade Escherichia coli deoxyribonucleic acid (DNA) by the following method. E. coli B was labeled in DNA at high specific activity with tritiated thymidine ((3)H-dT) and infected at low multiplicity with unmutagenized T4D. At 25 min after infection, the culture was lysed and stored. Wild-type T4 degrades the host DNA and incorporates the (3)H-dT into the DNA of progeny phage; mutants which fail to degrade the host DNA make unlabeled progeny phage. Wild-type progeny are eventually inactivated by tritium decay; mutants survive. Such mutants were found at a frequency of about 1% in the survivors. Eight mutants are in a single complementation group called denA located near gene 63. Four of these mutants which were examined in detail leave the bulk of the host DNA in large fragments. All eight mutants exhibit much less than normal T4 endonuclease II activity. The mutants produce somewhat fewer phage and less DNA than does wild-type T4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号