首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to the GBSSI isoform of starch synthase described previously, the pea plant contains a second, granule-bound isoform, GBSSIb. GBSSI is abundant in pea embryos and Rhizobium root nodules, is present at low levels in pods and is absent from leaves. Mutations at the lam locus eliminate GBSSI from all of these organs. GBSSIb is present in pods, leaves and nodules and is unaffected by mutations at the lam locus. GBSSI and GBSSIb are very similar in molecular mass, primary sequence, activity and antigenic properties. GBSSIb, like GBSSI, can synthesize amylose in the presence of malto-oligosaccharides in isolated starch granules. However, its role in vivo is unclear. The lam mutation eliminates amylose from the starch of embryos but does not affect the relatively small amounts of amylose-like material in the starch of pods, leaves and nodules. The significance of these results for understanding of the regulation of amylose synthesis is discussed.  相似文献   

2.
3.
4.
For lintners with negligible amylose retrogradation, crystallinity related inversely to starch amylose content and, irrespective of starch source, incomplete removal of amorphous material was shown. The latter was more pronounced for B-type than for A-type starches. The two predominant lintner populations, with modal degrees of polymerization (DP) of 13-15 and 23-27, were best resolved for amylose-deficient and A-type starches. Results indicate a more specific hydrolysis of amorphous lamellae in such starches. Small-angle X-ray scattering showed a more intense 9-nm scattering peak for native amylose-deficient A-type starches than for their regular or B-type analogues. The experimental evidence indicates a lower contrasting density within the "crystalline" shells of the latter starches. A higher density in the amorphous lamellae, envisaged by the lamellar helical model, explains the relative acid resistance of linear amylopectin chains with DP > 20, observed in lintners of B-type starches. Because amylopectin chain length distributions were similar for regular and amylose-deficient starches of the same crystal type, we deduce that the more dense (and ordered) packing of double helices into lamellar structures in amylose-deficient starches is due to a different amylopectin branching pattern.  相似文献   

5.
Transgenic potatoes expressing reduced levels of granule-bound starch synthase I (GBSSI) have been used to investigate whether the synthesis of amylose occurs at the surface of the starch granule or within the matrix formed by the synthesis and organization of amylopectin. Amylose in these potatoes is wholly or largely confined to a central region of the granule. Consequently this core region stains blue with iodine whereas the peripheral zone stains red. By making extensive measurements of the relative sizes of the granules and their blue-staining cores in tubers over a range of stages of development, we have established that the blue core increases in size as the granule grows. The extent of the increase in size of the blue core is greater in potatoes with higher levels of GBSSI. These data show that amylose synthesis occurs within the matrix of the granule, and are consistent with the idea that the space available in the matrix may be an important determinant of the amylose content of storage starches.  相似文献   

6.
Isoforms of starch synthase (EC 2.4.1.21) in pea (Pisum sativum L.) leaves have been identified and compared with those in developing pea embryos. Purification and immunoprecipitation experiments show that most of the soluble starch synthase activity of the leaf is contributed by a novel isoform (SSIII) that is antigenically related to the major soluble isoform of the potato tuber. The major soluble isoform of the embryo (SSII) is also present in the leaf, but contributes only 15% of the soluble activity. Study of the leaf starch of lam mutant peas, which lack the abundant granule-bound isoform responsible for amylose synthesis in the embryo (GBSSI), indicates that GBSSI is not responsible for the synthesis of amylose-like material in the leaf. Leaves appear to contain a novel granule-bound isoform, antigenically related to GBSSI. The implications of the results for understanding of the role of isoforms of starch synthase are discussed. Received: 13 March 1997 / Accepted: 13 May 1997  相似文献   

7.
Mutants of Pisum sativum L. with seeds containing low-amylose starch were isolated by screening a population derived from chemically mutagenized material. In all of the mutant lines selected, the low-amylose phenotype was caused by a recessive mutation at a single locus designated lam. In embryos of all but one mutant line, the 59 kDa granule-bound starch synthase (GBSSI) was absent or greatly reduced in amount. The granule-bound starch synthase activity in developing embryos of the mutants was reduced but not eliminated. These results provide further evidence that amylose synthesis is unique to GBSSI. Other granule-bound isoforms of starch synthase cannot substitute for this protein in amylose synthesis. Examination of iodine-stained starch granules from mutant embryos by light microscopy revealed large, blue-staining cores surrounded by a pale-staining periphery. In this respect, the low-amylose mutants of pea differ from those of other species. The differential staining may indicate that the structure of amylopectin varies between the core and peripheral regions.  相似文献   

8.
Multiple allelism in heterozygous autopolyploid species like potato not only occurs for genes that affect morphological characteristics but also for genes involved in metabolic pathways. Based on a combination of Southern and PCR analyses, at least eight alleles encoding granule-bound starch synthase I (GBSSI), which is responsible for amylose biosynthesis, have been identified in potato. These alleles were grouped into four classes, distinguishable by Southern analysis, and subdivided based on PCR. Despite the heterozygous and polyploid character of potato it was possible to assign variation in GBSSI activity to the allelic composition at the GBSSI loci within a large population of Solanum tuberosum cultivars and Solanum breeding lines. Moreover, the availability of an amf allele made it possible to reduce heterogeneity and enabled us to demonstrate an effect of GBSSI allelic composition on amylose content. The major difference between the alleles identified was the absence or presence of a 140-bp fragment at a site 0.5 kb upstream of the ATG start codon of the gene for GBSSI. The absence of this 140-bp fragment had a major effect on GBSSI activity and amylose content, while the presence of small deletions and simple sequence repeats had no obvious effect.  相似文献   

9.
Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activity was detected in pericarp starch granules than in endosperm starch granules. A granule-bound protein that differed from GBSSI in molecular mass and isoelectric point was detected in the pericarp starch granules but not in granules from endosperm. This protein was designated GBSSII. The N-terminal amino acid sequence of GBSSII, although not identical to wheat GBSSI, showed strong homology to waxy proteins or GBSSIs of cereals and potato, and contained the motif KTGGL, which is the putative substrate-binding site of GBSSI of plants and of glycogen synthase of Escherichia coli. GBSSII cross-reacted specifically with antisera raised against potato and maize GBSSI. This study indicates that GBSSI and GBSSII are expressed in a tissue-specific manner in different organs, with GBSSII having an important function in amylose synthesis in the pericarp.  相似文献   

10.
A rice Wx gene encoding a granule-bound starch synthase I (GBSSI) was introduced into the null-mutant waxy (wx) rice, and its effect on endosperm starches was examined. The apparent amylose content was increased from undetectable amounts for the non-transgenic wx cultivars to 21.6-22.2% of starch weight for the transgenic lines. The increase was in part due to a significant amount of extra-long unit chains (ELCs) of amylopectin (7.5-8.4% of amylopectin weight), that were absent in the non-transgenic wx cultivars. Thus, actual amylose content was calculated to be 14.9-16.0% for the transgenic lines. Only slight differences were found in chain-length distribution for the chains other than ELCs, indicating that the major effect of the Wx transgene on amylopectin structure was ELC formation. ELCs isolated from debranched amylopectin exhibited structures distinct from amylose. Structures of amylose from the transgenic lines were slightly different from those of cv. Labelle (Wx(a)) in terms of a higher degree of branching and size distribution. The amylose and ELC content of starches of the transgenic lines resulted in the elevation of pasting temperature, a 50% decrease in peak viscosity, a large decrease in breakdown and an increase in setback. As yet undetermined factors other than the GBSSI activity are thought to be involved in the control of formation and/or the amount of ELCs. Structural analysis of the Wx gene suggested that the presence of a tyrosine residue at position 224 of GBSSI correlates with the formation of large amounts of ELCs in cultivars carrying Wx(a).  相似文献   

11.
In this study of barley starch synthesis, the interaction between mutations at the sex6 locus and the amo1 locus has been characterized. Four barley genotypes, the wild type, sex6, amo1, and the amo1sex6 double mutant, were generated by backcrossing the sex6 mutation present in Himalaya292 into the amo1 'high amylose Glacier'. The wild type, amo1, and sex6 genotypes gave starch phenotypes consistent with previous studies. However, the amo1sex6 double mutant yielded an unexpected phenotype, a significant increase in starch content relative to the sex6 phenotype. Amylose content (as a percentage of starch) was not increased above the level observed for the sex6 mutation alone; however, on a per seed basis, grain from lines containing the amo1 mutation (amo1 mutants and amo1sex6 double mutants) synthesize significantly more amylose than the wild-type lines and sex6 mutants. The level of granule-bound starch synthase I (GBSSI) protein in starch granules is increased in lines containing the amo1 mutation (amo1 and amo1sex6). In the amo1 genotype, starch synthase I (SSI), SSIIa, starch branching enzyme IIa (SBEIIa), and SBEIIb also markedly increased in the starch granules. Genetic mapping studies indicate that the ssIIIa gene is tightly linked to the amo1 locus, and the SSIIIa protein from the amo1 mutant has a leucine to arginine residue substitution in a conserved domain. Zymogram analysis indicates that the amo1 phenotype is not a consequence of total loss of enzymatic activity although it remains possible that the amo1 phenotype is underpinned by a more subtle change. It is therefore proposed that amo1 may be a negative regulator of other genes of starch synthesis.  相似文献   

12.
13.
Starch biosynthesis in cereal endosperm   总被引:3,自引:0,他引:3  
Stored starch generally consists of two d-glucose homopolymers, the linear polymer amylose and a highly branched glucan amylopectin that connects linear chains. Amylopectin structurally contributes to the crystalline organization of the starch granule in cereals. In the endosperm, amylopectin biosynthesis requires the proper execution of a coordinated series of enzymatic reactions involving ADP glucose pyrophosphorylase (AGPase), soluble starch synthase (SS), starch branching enzyme (BE), and starch debranching enzyme (DBE), whereas amylose is synthesized by AGPase and granule-bound starch synthase (GBSS). It is highly possible that plastidial starch phosphorylase (Pho1) plays an important role in the formation of primers for starch biosynthesis in the endosperm. Recent advances in our understanding of the functions of individual enzyme isoforms have provided new insights into how linear polymer chains and branch linkages are synthesized in cereals. In particular, genetic analyses of a suite of mutants have formed the basis of a new model outlining the role of various enzyme isoforms in cereal starch production. In our current review, we summarize the recent research findings related to starch biosynthesis in cereal endosperm, with a particular focus on rice.  相似文献   

14.
A new α-amylase from Anoxybacillus flavothermus (AFA) was found to be effective in hydrolyzing raw starch in production of glucose syrup at temperatures below the starch gelatinization temperature. AFA is very efficient, leading to 77% hydrolysis of a 31% raw starch suspension. The final hydrolysis degree is reached in 2-3 h at starch concentrations lower than 15% and 8-24 h at higher concentrations. AFA is also very efficient in hydrolyzing the crystalline domains in the starch granule. The major A-type crystalline structure is more rapidly degraded than amorphous domains in agreement with the observed preferential hydrolysis of amylopectin. Amylose-lipid complexes are degraded in a second step, yielding amylose fragments which then re-associate into B-type crystalline structures forming the final α-amylase resistant fraction. The mode of action of AFA and the factors limiting complete hydrolysis are discussed in details.  相似文献   

15.
Granule-bound starch synthase I (GBSSI) is one of the key enzymes catalyzing the formation of amylose, a linear α(1,4)D-glucan polymer, from ADP-glucose. Amylose-free transgenic sweet potato plants were produced by inhibiting sweet potato GBSSI gene expression through RNA interference. The gene construct consisting of an inverted repeat of the first exon separated by intron 1 of GBSSI driven by the CaMV 35S promoter was integrated into the sweet potato genome by Agrobacterium tumefaciens-mediated transformation. In over 70% of the regenerated transgenic plants, the expression of GBSSI was inactivated giving rise to storage roots containing amylopectin but not amylose. Electrophoresis analysis failed to detect the GBSSI protein, suggesting that gene silencing of the GBSSI gene had occurred. These results clearly demonstrate that amylose synthesis is completely inhibited in storage roots of sweet potato plants by the constitutive production of the double-stranded RNA of GBSSI fragments. We conclude that RNA interference is an effective method for inhibiting gene expression in the starch metabolic pathway.  相似文献   

16.
The elongation of amylose and amylopectin chains in isolated starch granules   总被引:14,自引:1,他引:13  
The aim of this work was to investigate the conditions required for amylose synthesis in starch granules. Although the major granule-bound isoform of starch synthase - GBSSI - catalyses the synthesis of amylose in vivo, 14C from ADP[14C]glucose was incorporated primarily into a specific subset of amylopectin chains when supplied to starch granules isolated from pea (Pisum sativum L.) embryos and potato (Solanum tuberosum L.) tubers. Incubation of granules with soluble extracts of these organs revealed that the extracts contained compounds that increased the incorporation of 14C into amylose. These compounds were rendered inactive by treatment of the extracts with α-glucosidase, suggesting that they were malto-oligosaccharides. Consistent with this idea, provision of pure malto-oligosaccharides to isolated granules resulted in a dramatic shift in the pattern of incorporation of 14C, from amylopectin chains to amylose molecules. Comparison of the pattern of incorporation in granules from wild-type peas and lam mutant peas which lack GBSSI showed that this effect of malto-oligosaccharides was specifically on GBSSI. The significance of these results for understanding of the synthesis of amylose and amylopectin in storage organs is discussed.  相似文献   

17.
Crystallinity and structure of starch using wide angle X-ray scattering   总被引:1,自引:0,他引:1  
Wide angle X-ray diffraction was used to evaluate the crystalline fraction of a variety of starches, using preliminary smoothing then an iterative smoothing algorithm to estimate amorphous background scattering. This methodology was then used to determine initial crystallinity and monitor gelation and retrogradation of high amylose thermoplastic starch used to produce film. Retrogradation was monitored over a 5-day period. It was found that the starch film retrograded rapidly over the first 12 h with the film displaying both B-type crystallinity and long range amorphous ordering that were separately quantitatively calculated. Changes in starch films, including complete or partial gelatinization, retrogradation and crystallinity, were all determined through wide angle X-ray diffraction.  相似文献   

18.
Blazek J  Gilbert EP 《Biomacromolecules》2010,11(12):3275-3289
Enzymatic digestion of six starches of different botanical origin was studied in real time by in situ time-resolved small-angle neutron scattering (SANS) and complemented by the analysis of native and digested material by X-ray diffraction, differential scanning calorimetry, small-angle X-ray scattering, and scanning electron microscopy with the aim of following changes in starch granule nanostructure during enzymatic digestion. This range of techniques enables coverage over five orders of length-scale, as is necessary for this hierarchically structured material. Starches studied varied in their digestibility and displayed structural differences in the course of enzymatic digestion. The use of time-resolved SANS showed that solvent-drying of digested residues does not induce any structural artifacts on the length scale followed by small-angle scattering. In the course of digestion, the lamellar peak intensity gradually decreased and low-q scattering increased. These trends were more substantial for A-type than for B-type starches. These observations were explained by preferential digestion of the amorphous growth rings. Hydrolysis of the semicrystalline growth rings was explained on the basis of a liquid-crystalline model for starch considering differences between A-type and B-type starches in the length and rigidity of amylopectin spacers and branches. As evidenced by differing morphologies of enzymatic attack among varieties, the existence of granular pores and channels and physical penetrability of the amorphous growth ring affect the accessibility of the enzyme to the substrate. The combined effects of the granule microstructure and the nanostructure of the growth rings influence the opportunity of the enzyme to access its substrate; as a consequence, these structures determine the enzymatic digestibility of granular starches more than the absolute physical densities of the amorphous growth rings and amorphous and crystalline regions of the semicrystalline growth rings.  相似文献   

19.
Reasons for the variable amylose content of endosperm starch from waxy cultivars of barley (Hordeum vulgare) were investigated. The mature grains of most such cultivars contain some amylose, although amounts are much lower than in wild-type cultivars. In these low-amylose cultivars, amylose synthesis starts relatively late in grain development. Starch granules in the outer cell layers of the endosperm contain more amylose than those in the center. This distribution corresponds to that of granule-bound starch synthase I (GBSSI), which is more severely reduced in amount in the center of the endosperm than in the outer cell layers, relative to wild-type cultivars. A second GBSSI in the barley plant, GBSSIb, is not detectable in the endosperm and cannot account for amylose synthesis in the low-amylose cultivars. The change in the expression of GBSSI in the endosperm of the low-amylose cultivars appears to be due to a 413-bp deletion of part of the promoter and 5'-untranslated region of the gene. Although these cultivars are of diverse geographical origin, all carry this same deletion, suggesting that the low-amylose cultivars have a common waxy ancestor. Records suggest a probable source in China, first recorded in the 16th century. Two further families of waxy cultivars have no detectable amylose in the endosperm starch. These amylose-free cultivars were selected in the 20th century from chemically mutagenized populations of wild-type barley. In both cases, 1-bp alterations in the GBSSI gene completely eliminate GBSSI activity.  相似文献   

20.
High-sensitivity differential scanning microcalorimetry (HSDSC), small-angle X-ray scattering (SAXS), light (LM) and scanning electronic (SEM) microscopy techniques were used to study the defectiveness of different supramolecular structures in starches extracted from 11 Thai cultivars of rice differing in level of amylose and amylopectin defects in starch crystalline lamellae. Despite differences in chain-length distribution of amylopectin macromolecules and amylose level in starches, the invariance in the sizes of crystalline lamellae, amylopectin clusters and granules was established. The combined analysis of DSC, SAXS, LM and SEM data for native starches, as well as the comparison of the thermodynamic data for native and annealed starches, allowed to determine the structure of defects and the localization of amylose chains in crystalline and amorphous lamellae, defectiveness of lamellae, clusters and granules. It was shown that amylose “tie chains”, amylose–lipid complexes located in crystalline lamellae, defective ends of double helical chains dangling from crystallites inside amorphous lamellae (“dangling” chains), as well as amylopectin chains with DP 6–12 and 25–36 could be considered as defects. Their accumulation can lead to a formation of remnant granules. The changes observed in the structure of amylopectin chains and amylose content in starches are reflected in the interconnected alterations of structural organization on the lamellar, cluster and granule levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号