首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferric siderophores, vitamin B12, and group B colicins are taken up through the outer membranes of Escherichia coli cells by an energy-coupled process. Energy from the cytoplasmic membrane is transferred to the outer membrane with the aid of the Ton system, consisting of the proteins TonB, ExbB, and ExbD. In this paper we describe two point mutations which inactivate ExbD. One mutation close to the N-terminal end of ExbD is located in the cytoplasmic membrane, and the other mutation close to the C-terminal end is located in the periplasm. E. coli CHO3, carrying a chromosomal exbD mutation in which leucine at position 132 was replaced by glutamine, was devoid of all Ton-related activities. A plasmid-encoded ExbD derivative, in which aspartate at position 25, the only changed amino acid in the predicted membrane-spanning region of ExbD, was replaced by asparagine, failed to restore the Ton activities of strain CHO3 and negatively complemented ExbD+ strains, indicating an interaction of this mutated ExbD with wild-type ExbD or with another component. This component was shown to be ExbB. ExbB that was labeled with 6 histidine residues at its C-terminal end and that bound to a nickel-nitrilotriacetic acid agarose column retained ExbD and TonB specifically; both were eluted with the ExbB labeled with 6 histidine residues, demonstrating interaction of ExbB with ExbD and TonB. These data further support the concept that TonB, ExbB, and ExbD form a complex in which the energized conformation of TonB opens the channels in the outer membrane receptor proteins.  相似文献   

2.
The transport of iron complexes through outer membrane transporters from Gram-negative bacteria is highly dependent on the TonB system. Together, the three components of the system, TonB, ExbB and ExbD, energize the transport of iron complexes through the outer membrane by utilizing the proton motive force across the cytoplasmic membrane. The three-dimensional (3D) structure of the periplasmic domain of TonB has previously been determined. However, no detailed structural information for the other two components of the TonB system is currently available and their role in the iron-uptake process is not yet clearly understood. ExbD from Escherichia coli contains 141 residues distributed in three domains: a small N-terminal cytoplasmic region, a single transmembrane helix and a C-terminal periplasmic domain. Here we describe the first well-defined solution structure of the periplasmic domain of ExbD (residues 44-141) solved by multidimensional nuclear magnetic resonance (NMR) spectroscopy. The monomeric structure presents three clearly distinct regions: an N-terminal flexible tail (residues 44-63), a well-defined folded region (residues 64-133) followed by a small C-terminal flexible region (residues 134-141). The folded region is formed by two alpha-helices that are located on one side of a single beta-sheet. The central beta-sheet is composed of five beta-strands, with a mixed parallel and antiparallel arrangement. Unexpectedly, this fold closely resembles that found in the C-terminal lobe of the siderophore-binding proteins FhuD and CeuE. The ExbD periplasmic domain has a strong tendency to aggregate in vitro and 3D-TROSY (transverse relaxation optimized spectroscopy) NMR experiments of the deuterated protein indicate that the multimeric protein has nearly identical secondary structure to that of the monomeric form. Chemical shift perturbation studies suggest that the Glu-Pro region (residues 70-83) of TonB can bind weakly to the surface and the flexible C-terminal region of ExbD. At the same time the Lys-Pro region (residues 84-102) and the folded C-terminal domain (residues 150-239) of TonB do not show significant binding to ExbD, suggesting that the main interactions forming the TonB complex occur in the cytoplasmic membrane.  相似文献   

3.
The nucleotide sequence of a 3.6-kb HindIII-SmaI DNA fragment of Xanthomonas campestris pv. campestris revealed four open reading frames which, based on sequence homologies, were designated tonB, exbB, exbD1, and exbD2. Analysis of translational fusions to alkaline phosphatase and beta-galactosidase confirmed that the TonB, ExbB, ExbD1, and ExbD2 proteins are anchored in the cytoplasmic membrane. The TonB protein of X. campestris pv. campestris lacks the conserved (Glu-Pro)n and (Lys-Pro)m repeats but harbors a 13-fold repeat of proline residues. By mutational analysis, the tonB, exbB, and exbD1 genes were shown to be essential for ferric iron import in X. campestris pv. campestris. In contrast, the exbD2 gene is not involved in the uptake of ferric iron.  相似文献   

4.
In gram-negative bacteria, the cytoplasmic membrane proton-motive force energizes the active transport of TonB-dependent ligands through outer membrane TonB-gated transporters. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD couple the proton-motive force to conformational changes in TonB, which are hypothesized to form the basis of energy transduction through direct contact with the transporters. While the role of ExbB is not well understood, contact between periplasmic domains of TonB and ExbD is required, with the conformational response of TonB to presence or absence of proton motive force being modulated through ExbD. A region (residues 92 to 121) within the ExbD periplasmic domain was previously identified as being important for TonB interaction. Here, the specific sites of periplasmic domain interactions between that region and the TonB carboxy terminus were identified by examining 270 combinations of 45 TonB and 6 ExbD individual cysteine substitutions for disulfide-linked heterodimer formation. ExbD residues A92C, K97C, and T109C interacted with multiple TonB substitutions in four regions of the TonB carboxy terminus. Two regions were on each side of the TonB residues known to interact with the TonB box of TonB-gated transporters, suggesting that ExbD positions TonB for correct interaction at that site. A third region contained a functionally important glycine residue, and the fourth region involved a highly conserved predicted amphipathic helix. Three ExbD substitutions, F103C, L115C, and T121C, were nonreactive with any TonB cysteine substitutions. ExbD D25, a candidate to be on a proton translocation pathway, was important to support efficient TonB-ExbD heterodimerization at these specific regions.  相似文献   

5.
The TolQ and TolR proteins of Escherichia coli are required for the uptake of group A colicins and for infection by filamentous phages. Their topology in the cytoplasmic membrane was determined by cleavage with aminopeptidase K, proteinase K, and trypsin in spheroplasts and cell lysates. From the results obtained, it is proposed that the N terminus of TolQ is located in the periplasm and that it contains three transmembrane segments (residues 9 to 36, 127 to 159, and 162 to 191), a small periplasmic loop, and two large portions in the cytoplasm. The N terminus of TolR is located in the cytoplasm and is followed by a transmembrane segment (residues 21 to 40), and the remainder of the protein is located in the periplasm. A tolQ mutant, which rendered cells resistant to group A colicins and sensitive to cholate, had alanine 13 replaced by glycine and was lacking serine 14 in the first transmembrane segment. The membrane topologies of TolQ and TolR are similar to those proposed for ExbB and ExbD, respectively, which is consistent with the partial functional substitution between ExbB and TolQ and between ExbD and TolR. The amino acid sequences of these proteins display the highest homology in the transmembrane segments, which indicates that the membrane-spanning regions play an important role in the activities of the proteins.  相似文献   

6.
The TonB system of gram-negative bacteria energizes the active transport of diverse nutrients through high-affinity TonB-gated outer membrane transporters using energy derived from the cytoplasmic membrane proton motive force. Cytoplasmic membrane proteins ExbB and ExbD harness the proton gradient to energize TonB, which directly contacts and transmits this energy to ligand-loaded transporters. In Escherichia coli, the periplasmic domain of ExbD appears to transition from proton motive force-independent to proton motive force-dependent interactions with TonB, catalyzing the conformational changes of TonB. A 10-residue deletion scanning analysis showed that while all regions except the extreme amino terminus of ExbD were indispensable for function, distinct roles for the amino- and carboxy-terminal regions of the ExbD periplasmic domain were evident. Like residue D25 in the ExbD transmembrane domain, periplasmic residues 42 to 61 facilitated the conformational response of ExbD to proton motive force. This region appears to be important for transmitting signals between the ExbD transmembrane domain and carboxy terminus. The carboxy terminus, encompassing periplasmic residues 62 to 141, was required for initial assembly with the periplasmic domain of TonB, a stage of interaction required for ExbD to transmit its conformational response to proton motive force to TonB. Residues 92 to 121 were important for all three interactions previously observed for formaldehyde-cross-linked ExbD: ExbD homodimers, TonB-ExbD heterodimers, and ExbD-ExbB heterodimers. The distinct requirement of this ExbD region for interaction with ExbB raised the possibility of direct interaction with the few residues of ExbB known to occupy the periplasm.  相似文献   

7.
Membrane topology of penicillin-binding protein 3 of Escherichia coli   总被引:12,自引:4,他引:8  
The beta-lactamase fusion vector, pJBS633, has been used to analyse the organization of penicillin-binding protein 3 (PBP3) in the cytoplasmic membrane of Escherichia coli. The fusion junctions in 84 in-frame fusions of the coding region of mature TEM beta-lactamase to random positions within the PBP3 gene were determined. Fusions of beta-lactamase to 61 different positions in PBP3 were obtained. Fusions to positions within the first 31 residues of PBP3 resulted in enzymatically active fusion proteins which could not protect single cells of E. coli from killing by ampicillin, indicating that the beta-lactamase moieties of these fusion proteins were not translocated to the periplasm. However, all fusions that contained greater than or equal to 36 residues of PBP3 provided single cells of E. coli with substantial levels of resistance to ampicillin, indicating that the beta-lactamase moieties of these fusion proteins were translocated to the periplasm. PBP3 therefore appeared to have a simple membrane topology with residues 36 to the carboxy-terminus exposed on the periplasmic side of the cytoplasmic membrane. This topology was confirmed by showing that PBP3 was protected from proteolytic digestion at the cytoplasmic side of the inner membrane but was completely digested by proteolytic attack from the periplasmic side. PBP3 was only inserted in the cytoplasmic membrane at its amino terminus since replacement of its putative lipoprotein signal peptide with a normal signal peptide resulted in a water-soluble, periplasmic form of the enzyme. The periplasmic form of PBP3 retained its penicillin-binding activity and appeared to be truly water-soluble since it fractionated, in the absence of detergents, with the expected molecular weight on Sephadex G-100 and was not retarded by hydrophobic interaction chromatography on Phenyl-Superose.  相似文献   

8.
The coding region for the mature form of TEM beta-lactamase was fused to random positions within the coding region of the penicillin-binding protein 1B (PBP 1B) gene and the nucleotide sequences across the fusion junctions of 100 in-frame fusions were determined. All fusion proteins that contained at least the NH2-terminal 94 residues of PBP 1B provided individual cells of E. coli with substantial levels of ampicillin resistance, suggesting that the beta-lactamase moiety had been translocated to the periplasm. Fusion proteins that contained less than or equal to 63 residues of PBP 1B possessed beta-lactamase activity, but could not protect single cells of E. coli from ampicillin, indicating that the beta-lactamase moiety of these fusion proteins remained in the cytoplasm. The beta-lactamase fusion approach suggested a model for the organization of PBP 1B in which the protein is embedded in the cytoplasmic membrane by a single hydrophobic transmembrane segment (residues 64-87), with a short NH2-terminal domain (residues 1-63), and the remainder of the polypeptide (residues 88-844) exposed on the periplasmic side of the cytoplasmic membrane. The proposed model for the organization of PBP 1B was supported by experiments which showed that the protein was completely digested by proteinase K added from the periplasmic side of the cytoplasmic membrane but was only slightly reduced in size by protease attack from the cytoplasmic side of the membrane.  相似文献   

9.
The coding region for the mature form of TEM β–lactamase was fused to random positions within the coding region of the penicillin–binding protein 1B (PBP 1B) gene and the nucleotide sequences across the fusion junctions of 100 in–frame fusions were determined. All fusion proteins that contained at least the NH2–terminal 94 residues of PBP 1B provided individual cells of E. coli with substantial levels of ampicillin resistance, suggesting that the β–lactamase moiety had been translocated to the periplasm. Fusion proteins that contained ≤ 63 residues of PBP 1B possessed β–lactamase activity, but could not protect single cells of E. coli from ampicillin, indicating that the 3–lactamase moiety of these fusion proteins remained in the cytoplasm. The β–lactamase fusion approach suggested a model for the organization of PBP 1B in which the protein is embedded in the cytoplasmic membrane by a single hydrophobic trans–membrane segment (residues 64–87), with a short NH2–terminal domain (residues 1–63), and the remainder of the polypeptide (residues 68–844) exposed on the periplasmic side of the cytoplasmic membrane. The proposed model for the organization of PBP 1B was supported by experiments which showed that the protein was completely digested by proteinase K added from the periplasmic side of the cytoplasmic membrane but was only slightly reduced in size by protease attack from the cytoplasmic side of the membrane.  相似文献   

10.
The TonB system couples cytoplasmic membrane proton motive force (pmf) to active transport of diverse nutrients across the outer membrane. Current data suggest that cytoplasmic membrane proteins ExbB and ExbD harness pmf energy. Transmembrane domain (TMD) interactions between TonB and ExbD allow the ExbD C terminus to modulate conformational rearrangements of the periplasmic TonB C terminus in vivo. These conformational changes somehow allow energization of high-affinity TonB-gated transporters by direct interaction with TonB. While ExbB is essential for energy transduction, its role is not well understood. ExbB has N-terminus-out, C-terminus-in topology with three TMDs. TMDs 1 and 2 are punctuated by a cytoplasmic loop, with the C-terminal tail also occupying the cytoplasm. We tested the hypothesis that ExbB TMD residues play roles in proton translocation. Reassessment of TMD boundaries based on hydrophobic character and residue conservation among distantly related ExbB proteins brought earlier widely divergent predictions into congruence. All TMD residues with potentially function-specific side chains (Lys, Cys, Ser, Thr, Tyr, Glu, and Asn) and residues with probable structure-specific side chains (Trp, Gly, and Pro) were substituted with Ala and evaluated in multiple assays. While all three TMDs were essential, they had different roles: TMD1 was a region through which ExbB interacted with the TonB TMD. TMD2 and TMD3, the most conserved among the ExbB/TolQ/MotA/PomA family, played roles in signal transduction between cytoplasm and periplasm and the transition from ExbB homodimers to homotetramers. Consideration of combined data excludes ExbB TMD residues from direct participation in a proton pathway.  相似文献   

11.
Tripartite ATP-independent periplasmic ('TRAP') transporters are a novel group of bacterial and archaeal secondary solute uptake systems which possess a periplasmic binding protein, but which are unrelated to ATP-binding cassette (ABC) systems. In addition to the binding protein, TRAP transporters contain two integral membrane proteins or domains, one of which is 40-50 kDa with 12 predicted transmembrane (TM) helices, thought to be the solute import protein, while the other is 20-30 kDa and of unknown function. Using a series of plasmid-encoded beta-lactamase fusions, we have determined the topology of DctQ, the smaller integral membrane protein from the high-affinity C4-dicarboxylate transporter of Rhodobacter capsulatus, which to date is the most extensively characterised TRAP transporter. DctQ was predicted by several topology prediction programmes to have four TM helices with the N- and C-termini located in the cytoplasm. The levels of ampicillin resistance conferred by the fusions when expressed in Escherichia coli were found to correlate with this predicted topology. The data have provided a topological model which can be used to test hypotheses concerning the function of the different regions of DctQ and which can be applied to other members of the DctQ family.  相似文献   

12.
Signal sequences of Saccharomyces cerevisiae invertase and alpha-factor pheromone were tested for the ability to mediate protein transport through the inner membrane of Escherichia coli by fusion to bacterial beta-lactamase lacking the signal sequence (blaS0). Both types of transformants exhibited ampicillin resistance in accordance with the transport of the fused protein to the periplasmic compartment. This compartment contained most of the beta-lactamase activity present in the cell. Therefore, the tested yeast signal sequences, which conferred translocation of their proteins across the membrane of the endoplasmic reticulum in S. cerevisiae, can provide the same function in E. coli. The screening for ampicillin resistance among blaS0 fusions provides a convenient method for the isolation of functional yeast and possibly higher eucaryotic signal sequences.  相似文献   

13.
14.
Abstract The activity of the FhuA receptor in the outer membrane of Escherichia coli is dependent on the TonB, ExbB and ExbD proteins which are anchored to the cytoplasmic membrane. Only infection by phage T5 occurs independently of TonB, ExbB and ExbD. In this paper we describe mutated FhuA proteins which displayed either an increased or decreased FhuA activity to phage T5 when combined with mutated TonB proteins. These results suggest conformational changes in FhuA by TonB which are recognized by phage T5. Similar results were obtained with colicin M and the phages T1 and ⊘80. It is proposed that the FhuA mutant proteins assume conformations which are either improved or impaired by the TonB derivatives. For the direct interaction of FhuA with TonB regions which are located outside the TonB box of FhuA and the region around residue 160 of TonB are important.  相似文献   

15.
The TonB system couples cytoplasmic membrane proton motive force to TonB-gated outer membrane transporters for active transport of nutrients into the periplasm. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD promote conformational changes in TonB, which transmits this energy to the transporters. The only known energy-dependent interaction occurs between the periplasmic domains of TonB and ExbD. This study identified sites of in vivo homodimeric interactions within ExbD periplasmic domain residues 92 to 121. ExbD was active as a homodimer (ExbD(2)) but not through all Cys substitution sites, suggesting the existence of conformationally dynamic regions in the ExbD periplasmic domain. A subset of homodimeric interactions could not be modeled on the nuclear magnetic resonance (NMR) structure without significant distortion. Most importantly, the majority of ExbD Cys substitutions that mediated homodimer formation also mediated ExbD-TonB heterodimer formation with TonB A150C. Consistent with the implied competition, ExbD homodimer formation increased in the absence of TonB. Although ExbD D25 was not required for their formation, ExbD dimers interacted in vivo with ExbB. ExbD-TonB interactions required ExbD transmembrane domain residue D25. These results suggested a model where ExbD(2) assembled with ExbB undergoes a transmembrane domain-dependent transition and exchanges partners in localized homodimeric interfaces to form an ExbD(2)-TonB heterotrimer. The findings here were also consistent with our previous hypothesis that ExbD guides the conformation of the TonB periplasmic domain, which itself is conformationally dynamic.  相似文献   

16.
ExbB and ExbD proteins are part of the TonB-dependent energy transduction system and are encoded by the exb operon in Escherichia coli. TonB, the energy transducer, appears to go through a cycle during energy transduction, with the absence of both ExbB and ExbD creating blocks at two points: (i) in the inability of TonB to respond to the cytoplasmic membrane proton motive force and (ii) in the conversion of TonB from a high-affinity outer membrane association to a high-affinity cytoplasmic membrane association. The recent observation that ExbB exists in 3.5-fold molar excess relative to the molarity of ExbD in E. coli suggests the possibility of two types of complexes, those containing both ExbB and ExbD and those containing only ExbB. Such distinct complexes might individually manifest one of the two activities described above. In the present study this hypothesis was tested and rejected. Specifically, both ExbB and ExbD were found to be required for TonB to conformationally respond to proton motive force. Both ExbB and ExbD were also required for association of TonB with the cytoplasmic membrane. Together, these results support an alternative model where all of the ExbB in the cell occurs in complex with all of the ExbD in the cell. Based on recently determined cellular ratios of TonB system proteins, these results suggest the existence of a cytoplasmic membrane complex that may be as large as 520 kDa.  相似文献   

17.
Cytoplasmic membrane proteins ExbB and ExbD of the Escherichia coli TonB system couple cytoplasmic membrane protonmotive force (pmf) to TonB. TonB transmits this energy to high-affinity outer membrane active transporters. ExbD is proposed to catalyze TonB conformational changes during energy transduction. Here, the effect of ExbD mutants and changes in pmf on TonB proteinase K sensitivity in spheroplasts was examined. Spheroplasts supported the pmf-dependent formaldehyde cross-link between periplasmic domains of TonB and ExbD, indicating that they constituted a biologically relevant in vivo system to study changes in TonB proteinase K sensitivity. Three stages in TonB energization were identified. In Stage I, ExbD L123Q or TonB H20A prevented proper interaction between TonB and ExbD, rendering TonB sensitive to proteinase K. In Stage II, ExbD D25N supported conversion of TonB to a proteinase-K-resistant form, but not energization of TonB or formation of the pmf-dependent formaldehyde cross-link. Addition of protonophores had the same effect as ExbD D25N. This suggested the existence of a pmf-independent association between TonB and ExbD. TonB proceeded to Stage III when pmf was present, again becoming proteinase K sensitive, but now able to form the pmf-dependent cross-link to ExbD. Absence or presence of pmf toggled TonB between Stage II and Stage III conformations, which were also detected in wild-type cells. ExbD also underwent pmf-dependent conformational changes that were interdependent with TonB. These observations supported the hypothesis that ExbD couples TonB to the pmf, with concomitant transitions of ExbD and TonB periplasmic domains from unenergized to energized heterodimers.  相似文献   

18.
The cytoplasmic membrane proteins ExbB and ExbD support TonB-dependent active transport of iron siderophores and vitamin B12 across the essentially unenergized outer membrane of Escherichia coli. In this study, in vivo formaldehyde cross-linking analysis was used to investigate the interactions of T7 epitope-tagged ExbB or ExbD proteins. ExbB and ExbD each formed two unique cross-linked complexes which were not dependent on the presence of TonB, the outer membrane receptor protein FepA, or the other Exb protein. Cross-linking analysis of ExbB- and ExbD-derived size variants demonstrated instead that these ExbB and ExbD complexes were homodimers and homotrimers and suggested that ExbB also interacted with an unidentified protein(s). Cross-linking analysis of epitope-tagged ExbB and ExbD proteins with TonB antisera afforded detection of a previously unrecognized TonB-ExbD cross-linked complex and confirmed the composition of the TonB-ExbB cross-linked complex. The implications of these findings for the mechanism of TonB-dependent energy transduction are discussed.  相似文献   

19.
The lsp gene of Escherichia coli encodes the inner membrane enzyme, signal peptidase II (SPase II). SPase II is comprised of 164 amino acid residues and contains four hydrophobic domains. A series of lsp-phoA and lsp-lacZ gene fusions have been constructed in vitro to determine the topology of SPase II. The fusion junction for each of these gene fusions was determined by DNA sequencing. The lengths of the SPase II fragment in the fusions varied from 12 to 159 amino acid residues. Strains containing SPase II-PhoA fusions to the two predicted periplasmic loops exhibited higher levels of alkaline phosphatase activity than fusions to the predicted cytoplasmic domains. In contrast, SPase II-LacZ fusions at the cytoplasmic and the periplasmic domains of SPase II showed high and low levels of beta-galactosidase activity, respectively, a result opposite to those shown by SPase II-PhoA fusions located at precisely the same amino acid of SPase II. Taken together, these results strongly support the predicted model for SPase II topology, i.e. this enzyme spans the cytoplasmic membrane four times with both the amino and the carboxyl termini facing the cytoplasm.  相似文献   

20.
Energy-coupled transporters in the outer membrane of Escherichia coli and other Gram-negative bacteria allow the entry of scarce substrates, toxic proteins, and bacterial viruses (phages) into the cells. The required energy is derived from the proton-motive force of the cytoplasmic membrane, which is coupled to the outer membrane via the ExbB-ExbD-TonB protein complex. Knowledge of the structure of this complex is required to elucidate the mechanisms of energy harvesting in the cytoplasmic membrane and energy transfer to the outer membrane transporters. Here we solubilized an ExbB oligomer and an ExbB-ExbD subcomplex from the cytoplasmic membrane with the detergent undecyl maltoside. Using laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS), we determined at moderate desorption laser energies the oligomeric structure of ExbB to be mainly hexameric (ExbB(6)), with minor amounts of trimeric (ExbB(3)), dimeric (ExbB(2)), and monomeric (ExbB(1)) oligomers. Under the same conditions ExbB-ExbD formed a subcomplex consisting of ExbB(6)ExbD(1), with a minor amount of ExbB(5)ExbD(1). At higher desorption laser intensities, ExbB(1) and ExbD(1) and traces of ExbB(3)ExbD(1), ExbB(2)ExbD(1), ExbB(1)ExbD(1), ExbB(3), and ExbB(2) were observed. Since the ExbB(6) complex and the ExbB(6)ExbD(1) complex remained stable during solubilization and subsequent chromatographic purification on nickel-nitrilotriacetate agarose, Strep-Tactin, and Superdex 200, and during native blue gel electrophoresis, we concluded that ExbB(6) and ExbB(6)ExbD(1) are subcomplexes on which the final complex including TonB is assembled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号