首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
P Ernfors  A Henschen  L Olson  H Persson 《Neuron》1989,2(6):1605-1613
In situ hybridization histochemistry and RNA blot analysis were used to study expression of nerve growth factor receptor (NGF-R) mRNA in rat spinal cord motoneurons. The results show that NGF-R mRNA is expressed at high levels in rat spinal cord motoneurons at the time of naturally occurring cell death. This expression is sustained, but reduced, during synapse formation and is subsequently greatly reduced in the adult spinal cord. A unilateral crush lesion of the sciatic nerve resulted in an 8-fold increase in NGF-R mRNA in adult rat spinal cord motoneurons 3 days after lesion, compared with the nonlesioned side. NGF-R mRNA induction was even more pronounced 7 and 14 days after lesion, reaching levels 12 times higher than those on the nonlesioned side. However, 6 weeks after lesion, when the motor function of the leg was largely restored, NGF-R expression had decreased to levels similar to those on the contralateral side. We therefore suggest that NGF-R mediates a trophic or axonal guidance function for developing and regenerating spinal cord motoneurons.  相似文献   

2.
To determine if ciliary neurotrophic factor (CNTF) is involved in the response to spinal cord injury, we studied changes in the expression of CNTF and that of its receptor, CNTF-receptor α (CNTFRα), in the rat spinal cord after a unilateral spinal cord hemisection. Using in situ hybridization, we found that CNTFRα mRNA levels in spinal cord motoneurons increased dramatically by 1 day after hemisecting the spinal cord at T2. This increase in expression was present only in motoneurons caudal, but not rostral, to the lesion. In addition, we detected increased levels of CNTF mRNA in the spinal cord white matter, also by 1 day following injury. Unlike CNTFRα, however, the increase in CNTF mRNA was evident both rostral and caudal to the lesion. Levels of both CNTF and CNTFRα mRNA declined between 1 and 5 days, and by 10 days they were not significantly different from normal animals. These findings suggest that CNTF may play a local role in the response to spinal cord injury. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 251–261, 1997.  相似文献   

3.
4.
Progesterone (PROG) provides neuroprotection to the injured central and peripheral nervous system. These effects may be due to regulation of myelin synthesis in glial cells and also to direct actions on neuronal function. Both types of cells express classical intracellular PROG receptors (PR), while neurons additionally express the PROG membrane-binding site called 25-Dx. In motoneurons from rats with spinal cord injury (SCI), PROG restores to normal the deficient levels of choline acetyl-transferase and of alpha3 subunit Na,K-ATPase mRNA, while levels of the growth associated protein GAP-43 mRNA are further stimulated. Recent studies suggest that neurotrophins are possible mediators of hormone action, and in agreement with this assumption, PROG treatment of rats with SCI increases the expression of brain-derived neurotrophic factor (BDNF) at both the mRNA and protein levels in ventral horn motoneurons. In situ hybridization (ISH) has shown that SCI reduces BDNF mRNA levels by 50% in spinal motoneurons, while PROG administration to injured rats (4mg/kg/day during 3 days, s.c.) elicits a three-fold increase in grain density. In addition to enhancement of mRNA levels, PROG increases BDNF immunoreactivity in perikaryon and cell processes of motoneurons of the lesioned spinal cord, and also prevents the lesion-induced chromatolytic degeneration of spinal cord motoneurons as determined by Nissl staining. Our findings strongly indicate that motoneurons of the spinal cord are targets of PROG, as confirmed by the expression of PR and the regulation of molecular parameters. PROG enhancement of endogenous neuronal BDNF could provide a trophic environment within the lesioned spinal cord and might be part of the PROG activated-pathways to provide neuroprotection. Thus, PROG treatment constitutes a new approach to sustain neuronal function after injury.  相似文献   

5.
We have previously observed that ciliary neurotrophic factor (CNTF) can prevent the degeneration of androgen-sensitive perineal motoneurons and their target muscles, the bulbocavernosus and levator ani (BC/LA), in perinatal female rats. Response to CNTF is dependent on the expression of the alpha component of the CNTF receptor (CNTFRα). In the present study, we examined the developmental profile and androgen regulation of CNTFRα gene expression in BC/LA muscle, thigh muscle, and lumbosacral spinal cord. CNTFRα mRNA was abundantly expressed in the BC/LA and thigh around the time of birth; expression declined progressively after birth and remained low into adulthood. In contrast, CNTFRα message remained high in the lumbosacral spinal cord throughout development. Androgen regulation of CNTFRα expression was examined in prenatal animals by administering the androgen receptor blocker hydroxyflutamide from embryonic days E18 through E21. Four days of androgen deprivation caused a significant up-regulation of CNTFRα mRNA in the BC/LA, thigh, and spinal cord of male fetuses. After castration in adulthood, CNTFRα expression in the BC/LA transiently increased, then decreased below control levels. Expression of CNTFRα in thigh muscles and the lumbosacral spinal cord was not affected by adult castration. Thus, the perineal muscles and motoneurons are potential sites of direct CNTF action, and expression of the CNTFRα gene is modulated by androgen, especially in the androgen-sensitive perineal muscles. Transient up-regulation of CNTFRα following castration or androgen receptor blockade may represent a protective response designed to counteract the muscle atrophy normally induced by androgen withdrawal. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 217–225, 1998  相似文献   

6.
The human urotensin II (UII) precursor encompasses several potential cleavage sites and thus, processing of pro-UII may generate various forms of mature UII including the peptides of 11 (UII11), 16 (UII16) and 19 (UII19) residues. Until now, the native form of human UII had not been characterized. Here, we show that the major UII peptide occurring in the human spinal cord corresponds to UII11. In contrast, neither the UII16 nor the UII19 forms could be detected. In 50% of the brainstem and in all the spinal cord extracts analysed, a second minor UII-immunoreactive peptide was resolved. Immunohistochemical labelling of the cervical segment of the human spinal cord revealed that the UII-immunoreactive material was confined to a subset of ventral horn motoneurones. These data provide the first evidence that in the human, the UII precursor, expressed in motoneurones, is processed at the tribasic KKR93 cleavage site to generate a mature form of UII of 11 amino acids. The absence of N-terminally elongated forms of UII of 16 and 19 residues indicates that pro-UII is not cleaved at the R85 or K88 monobasic sites. Finally, the minor UII-immunoreactive peptide detected in several tissue extracts might correspond to an extended form of UII resulting from the processing of the UII precursor at the basic RK50 or RK66 doublets.  相似文献   

7.
8.
Xenopus is an excellent tetrapod model for studying normal and pathological motoneuron ontogeny due to its developmental morpho-physiological advantages. In mammals, the urotensin II-related peptide (UTS2B) gene is primarily expressed in motoneurons of the brainstem and the spinal cord. Here, we show that this expression pattern was conserved in Xenopus and established during the early embryonic development, starting at the early tailbud stage. In late tadpole stage, uts2b mRNA was detected both in the hindbrain and in the spinal cord. Spinal uts2b+ cells were identified as axial motoneurons. In adult, however, the uts2b expression was only detected in the hindbrain. We assessed the ability of the uts2b promoter to drive the expression of a fluorescent reporter in motoneurons by recombineering a green fluorescent protein (GFP) into a bacterial artificial chromosome (BAC) clone containing the entire X. tropicalis uts2b locus. After injection of this construction in one-cell stage embryos, a transient GFP expression was observed in the spinal cord of about a quarter of the resulting animals from the early tailbud stage and up to juveniles. The GFP expression pattern was globally consistent with that of the endogenous uts2b in the spinal cord but no fluorescence was observed in the brainstem. A combination of histological and electrophysiological approaches was employed to further characterize the GFP+ cells in the larvae. More than 98% of the GFP+ cells expressed choline acetyltransferase, while their projections were co-localized with α-bungarotoxin labeling. When tail myotomes were injected with rhodamine dextran amine crystals, numerous double-stained GFP+ cells were observed. In addition, intracellular electrophysiological recordings of GFP+ neurons revealed locomotion-related rhythmic discharge patterns during fictive swimming. Taken together our results provide evidence that uts2b is an appropriate driver to express reporter genes in larval motoneurons of the Xenopus spinal cord.  相似文献   

9.
Interstitial cystitis/painful bladder syndrome is a chronic bladder inflammatory disease of unknown etiology that is often regarded as a neurogenic cystitis. Interstitial cystitis is associated with urothelial lesions, voiding dysfunction, and pain in the pelvic/perineal area. In this study, we used a murine neurogenic cystitis model to identify genes participating in the development of pelvic pain. Neurogenic cystitis was induced by the injection of Bartha's strain of pseudorabies virus (PRV) into the abductor caudalis dorsalis (tail base) muscle of female C57BL/6J mice. Mice infected with PRV developed progressive pelvic pain. The sacral spinal cord was harvested on postinfection days (PID) 2 and 4, and gene expression was analyzed by microarrays and confirmed by quantitative RT-PCR. On PID 2, the overall expression profile was similar to that of uninfected sacral spinal cord; by PID 4, there were substantial differences in expression of multiple functional classes of genes, especially inflammation. Analysis of pain-signaling pathways at the dorsal horn suggested that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) contributes to neurogenic cystitis pelvic pain. Consistent with this, CaMKIIδ expression exhibited a mast cell-dependent increase in the sacral spinal cord at the mRNA level, and phospho-CaMKII immunoreactivity in the dorsal horn was increased on postinfection day (PID) 4 during PRV infection. Finally, intrathecal injection of the CaMKII inhibitor KN-93 attenuated the PRV pain response. These data suggest that CaMKII plays a functional role in pelvic pain due to neurogenic cystitis.  相似文献   

10.
Urotensin II (UII) has been reported as the most potent known vasoconstrictor. While rat and mouse orthologs of UII precursor protein have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack typical processing sites for their mature peptides. In the present study, we isolated a novel peptide, UII-related peptide (URP), from the extract of the rat brain as the sole immunoreactive substance to anti-UII antibody; the amino acid sequence of the peptide was determined as ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and revealed that the sequences of mouse and human URP peptides are the same as that for rat URP. Prepro-URP gene is expressed in several rat tissues such as those of the thymus, spleen, testis, and spinal cord, although with lower levels than the prepro-UII gene. In the human, the prepro-URP gene is expressed comparably to prepro-UII in several tissues except the spinal cord. URP was found to bind and activate the human or rat UII receptors (GPR14) and showed a hypotensive effect when administered to anesthetized rats. These results suggest that URP is the endogenous and functional ligand for UII receptor in the rat and mouse, and possibly in the human. We also describe the preparation of specific monoclonal antibodies raised against UII peptide and the establishment of a highly sensitive enzyme immunoassay system for UII peptides.  相似文献   

11.
12.
13.
Experiments were performed to examine the influence of interneuronal interactions on the expression of neurotransmitter receptors by developing mammalian CNS neurons. Receptors for the neuropeptide, substance P (SP), were assayed on embryonic rat motoneurons and other spinal cord neurons developing in vitro by the binding of 125I-SP to live neurons. Scatchard analysis showed the presence of high-affinity binding sites, and binding competition assays using SP, neurokinin A, or neurokinin B indicated that the high-affinity 125I-SP binding sites on these neurons were type NK1 tachykinin receptors, or SP receptors (SPRs). Neurons in the spinal cords of rats at Embryonic Day 14 displayed no SPRs. Cell-surface SPRs were detected on spinal cord neurons within 24 hr after they were placed in culture, however, and the level of 125I-SP binding increased for several days. SPRs were assayed on spinal motoneurons that had been identified by retrograde labeling with a fluorescent tracer, isolated in high purity by fluorescence-activated cell sorting (FACS), and maintained in culture. Motoneurons grown in isolation from other neurons developed SPRs in vitro along the same time course as neurons in heterogeneous spinal cord cultures. These results show that rat spinal motoneurons can express SPRs early in their development, and they suggest that the initial expression of SPRs by developing motoneurons does not require interaction with other neurons.  相似文献   

14.
Progesterone neuroprotection has been reported in experimental brain, peripheral nerve and spinal cord injury. To investigate for a similar role in neurodegeneration, we studied progesterone effects in the Wobbler mouse, a mutant presenting severe motoneuron degeneration and astrogliosis of the spinal cord. Implant of a single progesterone pellet (20 mg) during 15 days produced substantial changes in Wobbler mice spinal cord. Morphologically, motoneurons of untreated Wobbler mice showed severe vacuolation of intracellular organelles including mitochondria. In contrast, neuropathology was less pronounced in Wobbler mice receiving progesterone, together with a reduction of vacuolated cells and preservation of mitochondrial ultrastructure. Determination of mRNAs for the 3 and β1 subunits of neuronal Na, K-ATPase, showed that mRNA levels in untreated mice were significantly reduced, whereas progesterone therapy re-established the expression of both subunits. Additionally, progesterone treatment of Wobbler mice attenuated the aberrant expression of the growth-associated protein (GAP-43) mRNA which otherwise occurred in motoneurons of untreated animals. The hormone, however, was without effect on astrocytosis of Wobbler mice, determined by glial fibrillary acidic protein (GFAP)-immunostaining. Lastly, progesterone treatment of Wobbler mice enhanced grip strength and prolonged survival at the end of the 15-day observation period. Recovery of morphology and molecular motoneuron parameters of Wobbler mice receiving progesterone, suggest a new and important role for this hormone in the prevention of spinal cord neurodegenerative disorders.  相似文献   

15.
Abstract

Substance P receptors (SPRs) are expressed by prenatal rat spinal cord neurons and glial cells early in their differentiation, and SPRs may mediate developmental influences in the developing spinal cord. In order to understand better early SPR expression, we quantified SPR mRNA in the rat spinal cord during prenatal development using a cDNA probe for the rat SPR in nuclease protection assays. SPR mRNA was present in the rat spinal cord at E14, the earliest stage examined, and the presence of specific binding sites for radiolabeled SP suggested that SPRs were expressed at the protein level as well. Comparisons of samples from rats at different prenatal ages showed that the relative abundance of SPR mRNA declined by about 75% from E14 through the remainder of prenatal development. Assays of the hydrolysis of phosphatidyl inositol performed on prenatal spinal cord cells in culture revealed that SP caused a small but significant stimulation. These results show that expression of SPRs is an early molecular event in the development of the rat spinal cord in vivo and that SPRs on young spinal cord cells can mediate functional responses at early developmental stages.  相似文献   

16.
17.
High mobility group box 1 (HMGB1, also called amphoterin) facilitates neurite outgrowth in early development, yet can exacerbate pathology and inhibit regeneration by inducing adverse neuroinflammation when released from dying cells, suggesting that HMGB1 plays a critical, yet undefined role in neuroregeneration. We explored whether HMGB1 contributes to recovery after complete spinal cord transection in adult zebrafish. Quantitative PCR and in situ hybridization revealed that HMGB1 mRNA levels decreased between 12 h to 11 days after spinal cord injury (SCI), then returned to basal levels by 21 days. Western blot and immunohistological analyses indicated that the time course of HMGB1 protein expression after SCI parallels that of mRNA. Immunofluorescence staining revealed that HMGB1 translocates from nuclei into the cytoplasm of spinal motoneurons at 4 and 12 h (acute stage) following SCI, then accumulates in the nuclei of motoneurons during the ensuing chronic stage (after 6 days following SCI). Immunohistology of transgenic zebrafish, expressing green fluorescent protein in blood vessels, showed enhanced HMGB1 expression in blood vessels in the vicinity of motoneurons. Application of anti-sense HMGB1 morpholinos inhibited locomotor recovery by 34 % and decreased axonal regeneration by 34 % compared to fish treated with a control morpholino. The present study shows that HMGB1 expression increases in both endothelial cells and motoneurons, suggesting that HMGB1 promotes recovery from SCI not only through enhancing neuroregeneration, but also by increasing angiogenesis. The inflammatory effects of HMGB1 are minimized through the decrease in HMGB1 expression during the acute stage.  相似文献   

18.
The neural neurosecretory system of fishes produces two biologically active neuropeptides, i.e. the corticotropin-releasing hormone paralog urotensin I (UI) and the somatostatin-related peptide urotensin II (UII). In zebrafish, we have recently characterized two UII variants termed UIIalpha and UIIbeta. In the present study, we have investigated the distribution of UI, UIIalpha and UIIbeta mRNAs in different organs by quantitative RT-PCR analysis and the cellular localization of the three mRNAs in the spinal cord by in situ hybridization (ISH) histochemistry. The data show that the UI gene is mainly expressed in the caudal portion of the spinal cord and, to a lesser extent, in the brain, while the UIIalpha and the UIIbeta genes are exclusively expressed throughout the spinal cord. Single-ISH labeling revealed that UI, UIIalpha and UIIbeta mRNAs occur in large cells, called Dahlgren cells, located in the ventral part of the caudal spinal cord. Double-ISH staining showed that UI, UIIalpha and UIIbeta mRNAs occur mainly in distinct cells, even though a few cells were found to co-express the UI and UII genes. The differential expression of UI, UIIalpha and UIIbeta genes may contribute to the adaptation of Dahlgren cell activity during development and/or in various physiological conditions.  相似文献   

19.
20.
Thoracic spinal cord transplanted to the lumbar region at the time of neural tube closure in the chick embryo survives and initially differentiates normally similar to in situ thoracic cord. Normal numbers of motoneurons are produced that innervate the host hindlimb musculature. In control thoracic cord approximately 70% of the motoneurons are lost by normal cell death between embryonic day (E) 6 and E11-E12. By contrast, the transplanted thoracic cord loses only about 30% of the motoneurons during this period. Transplantation of one hindlimb to the thoracic region also reduces the normal loss of in situ thoracic motoneurons. We conclude that some factor(s) associated with the increased target size provided by the hindlimbs promotes the survival of thoracic motoneurons. In contrast, by E16-E18 motoneuron numbers in the thoracic transplants decrease to below control levels. Dorsal root ganglion cells in the transplant were also initially increased (on E8) but later decreased to below control values. Hindlimb muscles innervated by thoracic motoneurons in the transplant also differentiated normally up to E10 to E12. Myotube size and numbers, muscle size and myotube types (fast versus slow) all developed normally in several thoracically-innervated hindlimb muscles. However, beginning on E14 myotube numbers and muscle size were markedly decreased resulting in muscle atrophy. Injections of horseradish peroxidase (HRP) into the thoracic transplants labelled neurons in the host spinal cord and brainstem rostral to the transplant thereby indicating an anatomical continuity between host and transplant neural tube. Injections of HRP into specific thoracically innervated hindlimb muscles on E8 labelled distinct pools of motoneurons in the transplants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号