首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pollution of the environment with toxic metals is a result of many human activities, such as mining and metallurgy, and the effects of these metals on the ecosystems are of large economic and public‐healthsignificance. This paper presents the features and advantages of the unconventional removal method of heavy metals – biosorption – as a part of bioremediation. Bioremediation consists of a group of applications, which involvethe detoxification of hazardous substances instead of transferring them from one medium to another, by means of microbes and plants. This process is characterized as less disruptive and can be often carried out on site, eliminating the need to transport the toxic materials to treatment sites. The biosorption (sorption of metallic ions from solutions by live or dried biomass) offers an alternative to the remediation of industrial effluents as well as the recovery of metals contained in other media. Biosorbents are prepared from naturally abundant and/or waste biomass. Due to the high uptake capacity and very cost‐effective source of the raw material, biosorption is a progression towards a perspective method. The mechanism by which microorganisms take up metals is relatively unclear, but it has been demonstrated that both living and non‐living biomass may be utilized in biosorptive processes, as they often exhibit a marked tolerance towards metals and other adverse conditions. One of their major advantages is the treatment of large volumes of effluents with low concentrations of pollutants. Models developed were presented to determine both the number of adsorption sites required to bind each metal ion and the rate of adsorption, using a batch reactor mass balance and the Langmuir theory of adsorption to surfaces or continuous dynamic systems. Two main categories of bioreactors used in bioremediation – suspended growth and fixed film bioreactors – are discussed. Reactors with varying configurations to meet the different requirements for biosorption are analyzed considering two major groups of reactors – batch reactors and continuous reactors. Biosorption is treated as an emerging technology effective in removing even very low levels of heavy metal.  相似文献   

2.
In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013–0.089 min–1 and 0.026–0.690 min–0.5. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81–100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd.  相似文献   

3.
Fungi such as Aspergillus niger and Mucor rouxii are capable of removing heavy metals from aqueous solutions. The role various functional groups play in the cell wall of M. rouxii in metal biosorption of lead, cadmium, nickel and zinc was investigated in this paper. The biomass was chemically treated to modify the functional carboxyl, amino and phosphate groups. These modifications were examined by means of infrared spectroscopy. It was found that an esterification of the carboxyl groups and phosphate and a methylation of the amine groups significantly decreased the biosorption of the heavy metals studied. Thus, the carboxylate, amine and phosphate groups were recognized as important in the biosorption of metal ions by M. rouxii biomass. The role the lipids fraction play was not significant. The study showed that Na, K, Ca and Mg ions were released from the biomass after biosorption of Pb, Cd, Ni and Zn, indicating that ion exchange was a key mechanism in the biosorption of metal ions by M. rouxii biomass.  相似文献   

4.
5.
The elimination of heavy metals from bioleaching process waters (leachates) by electrolysis was studied in the anode and cathode region of a membrane electrolysis cell at current densities of 5–20 mA/cm2 using various electrode materials. The leaching waters containing a wide range of dissolved heavy metals, were high in sulfate, and had pH values of approx. 3. In preliminary tests using a rotating disc electrode the current density‐potential curve (CPK) was recorded at a rotation velocity of 0, 1000 and 2000 rpm and a scan rate of 10 mV/s in order to collect information on the influence of transport processes on the electrochemical processes taking place at the electrodes. The electrochemical deposition‐dissolution processes at the cathode are strongly dependent on the hydrodynamics. Detailed examination of the anodic oxidation of dissolved Mn(II) indicated that the manganese dioxide which formed adhered well to the electrode surface but in the cathodic return run it was again reduced. Electrode pairs of high‐grade steel, lead and coal as well as material combinations were used to investigate heavy metal elimination in a membrane electrolysis cell. Using high‐grade steel, lead and carbon electrode pairs, the reduction and deposition of Cu, Zn, Cr, Ni and some Cd in metallic or hydroxide form were observed in an order of 10–40 % in the cathode chamber. The dominant process in the anode chamber was the precipitation of manganese dioxide owing to the oxidation of dissolved Mn(II). Large amounts of heavy metals were co‐precipitated by adsorption onto the insoluble MnO2. High‐grade steel and to some extent lead anodes were dissolved and hence were proven unsuitable as an anode material. These findings were largely confirmed by experiments using combination electrodes of coal and platinized titanium as an anode material and steel as a cathode material. With both electrode combinations and current densities of 5 or 10 mA/cm2, in the cathode region low depositions of 10–20 % Cd, 2–10% Mn, 5–20 % Zn, 1–20 % Co and 5–15 % Ni were measured. By contrast, the elimination of other metals was substantially larger: Fe 40 –60 %, Cu 20–40 %, and Cr 40–60 %. In the anode region the removal of heavy metals was in the order of 30–50%, with Mn being as high as 80 %. The anode materials exhibit good resistance at the current densities tested. The precipitates deposited in both electrode regions contained as main components Al with 10–20 %, Mg with approximately 10 %, and SO4 with 5–20 %. The solid material in the cathode chamber consisted of relatively high proportions of Zn and Mn. Calcium in the solids indicated the co‐precipitation of calcium sulfate. The main components in the solids of the anode chamber were Mn in the form of pyrolusite, Al as basic sulfate, and Mg. The results indicate that electrochemical metal separation in the membrane electrolysis cell can represent a practical alternative to the metal separation by alkalization. Regarding the main heavy metals Zn, Mn and Ni in the process water, combination electrodes using steel as a cathode material and coal or platinized titanium as an anode material proved to be suitable for eliminating the heavy metals from the aqueous phase. However, for practical application, further work is necessary to improve the efficiency, applicability and costs of the process.  相似文献   

6.
酿酒酵母吸附重金属离子的研究进展   总被引:26,自引:0,他引:26  
重金属污染成为当今最重要的环境问题之一。生物吸附法是处理大体积低浓度重金属废水的一种理想方法,近年来有关的研究报道不断增多,但尚未实现工业化应用。酿酒酵母(Saccharomyces cerevisiae)不仅是具有实用潜力的生物吸附剂,也是研究重金属生物吸附机理的良好材料。结合自己的研究成果,总结了酿酒酵母作为生物吸附材料的优点、研究中的表现形式和吸附性能,重点讨论了酿酒酵母生物吸附机理,介绍了等温吸附平衡模型和动力学模型在酵母生物吸附中的应用情况。最后提出生物吸附进一步的研究方向。  相似文献   

7.
Three different kinds of Phanerochaete chrysosporium (NaOH‐treated, heat‐inactivated and active) biosorbent were used for the removal of Cd(II) and Hg(II) ions from aquatic systems. The biosorption of Cd(II) and Hg(II) ions on three different forms of Phanerochaete chrysosporium was studied in aqueous solutions in the concentration range of 50–700 mg/L. Maximum biosorption capacities of NaOH‐treated, heat‐inactivated and active Phanerochaete chrysosporium biomass were found to be 148.37 mg/g, 78.68 mg/g and 68.56 mg/g for Cd(II) as well as 224.67 mg/g, 122.37 mg/g and 88.26 mg/g for Hg(II), respectively. For Cd(II) and Hg(II) ions, the order of affinity of the biosorbents was arranged as NaOH‐treated > heat‐inactivated > active. The order of the amount of metal ions adsorbed was established as Hg(II) > Cd(II) on a weight basis, and as Cd(II) > Hg(II) on a molar basis. Biosorption equilibriums were established in about 60 min. The effect of the pH was also investigated, and maximum rates of biosorption of metal ions on the three different forms of Phanerochaete chrysosporium were observed at pH 6.0. The reusability experiments and synthetic wastewater studies were carried out with the most effective form, i.e., the NaOH‐treated Phanerochaete chrysosporium biomass. It was observed that the biosorbent could be regenerated using 10 mM HCl solution, with a recovery of up to 98%, and it could be reused in five biosorption‐desorption cycles without any considerable loss in biosorption capacity. The alkali‐treated Phanerochaete chrysosporium removed 73% of Cd(II) and 81% of Hg(II) ions from synthetic wastewater.  相似文献   

8.
This paper reports a study on the potential use of sheep manure waste (SMW) for the removal of nickel ions from aqueous solutions. The adsorption of nickel ions from aqueous solutions on SMW has been studied as functions of contact time, initial pH, amount of sorbent, sorbent particle size, initial concentration of nickel ions, salt, and chelating agents. The experimental results showed that the SMW has a high affinity for nickel binding, where 79 % removal of 100 ppm initial nickel ions concentration was obtained using 8.0 mg SMW/mL, at pH 6.5 in 4 minutes equilibrium time. The equilibrium adsorption data were analyzed using four different isotherms: the Langmuir, Freundlich, Redlich‐Peterson, and Sips isotherm equations. The results of the kinetic studies showed that the adsorption of nickel ions on SMW is a pseudo‐first order with respect to the nickel ions solution concentration.  相似文献   

9.
The dead Kluyveromyces marxianus biomass, a fermentation industry waste, was used to explore its sorption potential for lead, mercury, arsenic, cobalt, and cadmium as a function of pH, biosorbent dosage, contact time, agitation speed, and initial metal concentration. The equilibrium data fitted the Langmuir model better for cobalt and cadmium, but Freundlich isotherm for all metals tested. At equilibrium, the maximum uptake capacity (Qmax) was highest for lead followed by mercury, arsenic, cobalt, and cadmium. The RL values ranged between 0–1, indicating favorable sorption of all test metals by the biosorbent. The maximum Kf value of Pb showed its efficient removal from the solution. However, multi-metal analysis depicted that sorption of all metals decreased except Pb. The potentiometric titration of biosorbent revealed the presence of functional groups viz. amines, carboxylic acids, phosphates, and sulfhydryl group involved in heavy metal sorption. The extent of contribution of functional groups and lipids to biosorption was in the order: carboxylic>lipids>amines>phosphates. Blocking of sulfhydryl group did not have any significant effect on metal sorption.  相似文献   

10.
生物淋滤技术在去除污泥中重金属的应用   总被引:65,自引:1,他引:65  
利用微生物方法去除污泥中重金属(生物淋滤法)具有成本低,去除效率高,脱毒后污泥脱水性能好等优点,近年来在国际上备受关注,生物淋滤法采用的主要细菌为氧化亚铁硫杆菌(Thiobacillus ferrooxidans)和氧化硫硫杆菌(Thiobacillus thiooxidans),在其作用下,污泥中以难溶性金属硫化物被氧化成金属硫酸盐而溶出,通过固液分离即可达到去除重金属的目的,污泥的生物淋滤效果受温度、O2和CO2浓度,起始pH、污泥种类与浓度、底物种类与浓度、抑制因子、Fe^3 浓度等的影响,较为详细地介绍了生物淋滤法的作用机理及高效去除污泥中重金属的操作程序,并对其在环境污染治理方面的应用前景作了分析。  相似文献   

11.
Abstract

In this work, the potential use of the immobilized cells of Chryseomonas luteola TEM 05 for the removal of Cr+6, Cd+2 and Co+2 ions from aqueous solutions was investigated. The living cells of C. luteola TEM 05 were firstly entrapped both in carrageenan and chitosan coated carrageenan gels and then used in biosoption of the metal ions in batch reactors at pH 6.0, 25°C, in 100 mg L?1 of each metal solution. Besides this, a process of competitive biosorption of these metal ions was also described and compared to single metal ion adsorption in solution. According to the immobilization results, the replacement of KCl by KCl-chitosan as gelling agent improved the mechanical strength and thermal stability of the gel. In addition, the C. luteola TEM 05 immobilized carrageenan-chitosan gel system was quite more efficient for the fast adsorption of metal ions from aqueous solution than the carrageenan gels without biomass.  相似文献   

12.
13.
Historical emissions of old nonferrous factories lead to large geographical areas of metals-contaminated sites. At least 50 sites in Europe are contaminated with metals like Zn, Cd, Cu, and Pb. Several methods, based on granular differentiation, were developed to reduce the metals content. However, the obtained cleaned soil is just sand. Methods based on chemical leaching or extraction or on electrochemistry do release a soil without any salts and with an increased bioavailability of the remaining metals content. In this review a method is presented for the treatment of sandy soil contaminated with heavy metals. The system is based on the metal solubilization on biocyrstallization capacity of Alcaligenes eutrophus CH34. The bacterium can solubilize the metals (or increase their bioavailability) via the production of siderophores and adsorb the metals in their biomass on metal-induced outer membrane proteins and by bioprecipitation. After the addition of CH34 to a soil slurry, the metals move toward the biomass. As the bacterium tends to float quite easily, the biomass is separated from the water via a flocculation process. The Cd concentration in sandy soils could be reduced from 21 mg Cd/kg to 3.3 mg Cd/kg. At the same time, Zn was reduced from 1070 mg Zn/kg to 172 mg Zn/kg. The lead concentration went down from 459 mg Pb/kg to 74 mg Pb/kg. With the aid of biosensors, a complete decrease in bioavailability of the metals was measured.  相似文献   

14.
霉菌吸附重金属离子的研究进展   总被引:1,自引:0,他引:1  
介绍了目前国内外采用霉菌吸附分离废水中重金属离子的研究情况,总结了不同霉菌的吸附能力,讨论了霉菌吸附重金属离子的影响因素、机理以及固定化技术,最后展望了霉菌吸附重金属的发展趋势.  相似文献   

15.
This present study considers the adsorption of cations of heavy metals (zinc, cadmium, copper) which are frequently encountered in industrial wastewaters. The solid material used as adsorbent is nonactivated carbon obtained from a local cereal byproduct. In order to assess this material, adsorbents obtained from other agricultural byproducts, such as almond and peanuts shells, have also been tested. Adsorption isotherms have been determined and the influence of various parameters, such as the particle size, the solid‐liquid contacting time, the pH of the solution, the initial concentration, the mixing velocity, the temperature and the ratio solid mass over solution volume, have been considered. The case of simultaneous presence of metallic cations in the solution has also been considered in order to examine their affinity towards the adsorbent. An attempt to determine whether the retention of the cations is a pure adsorption or an ion exchange has also been carried out. Retention yield values exceeding 90 % have been reached with an initial concentration of 10 mg/L, a temperature of 20 °C, a particle size smaller than 0.1 mm, a mixing velocity of 600 rev/min, a ratio of 0.5 g adsorbent over 50 ml of solution and a pH varying between 3 and 6.  相似文献   

16.
Wastewater particularly from electroplating, paint, leather, metal and tanning industries contain enormous amount of heavy metals. Microorganisms including fungi have been reported to exclude heavy metals from wastewater through bioaccumulation and biosorption at low cost and in eco-friendly way. An attempt was, therefore, made to isolate fungi from sites contaminated with heavy metals for higher tolerance and removal of heavy metals from wastewater. Seventy-six fungal isolates tolerant to heavy metals like Pb, Cd, Cr and Ni were isolated from sewage, sludge and industrial effluents containing heavy metals. Four fungi (Phanerochaete chrysosporium, Aspegillus awamori, Aspergillus flavus, Trichoderma viride) also were included in this study. The majority of the fungal isolates were able to tolerate up to 400 ppm concentration of Pb, Cd, Cr and Ni. The most heavy metal tolerant fungi were studied for removal of heavy metals from liquid media at 50 ppm concentration. Results indicated removal of substantial amount of heavy metals by some of the fungi. With respect to Pb, Cd, Cr and Ni, maximum uptake of 59.67, 16.25, 0.55, and 0.55 mg/g was observed by fungi Pb3 (Aspergillus terreus), Trichoderma viride, Cr8 (Trichoderma longibrachiatum), and isolate Ni27 (A. niger) respectively. This indicated the potential of these fungi as biosorbent for removal of heavy metals from wastewater and industrial effluents containing higher concentration of heavy metals.  相似文献   

17.
Biosorption of heavy metals from aqueous solutions with tobacco dust   总被引:9,自引:0,他引:9  
Qi BC  Aldrich C 《Bioresource technology》2008,99(13):5595-5601
A typical lignocellulosic agricultural residue, namely tobacco dust, was investigated for its heavy metal binding efficiency. The tobacco dust exhibited a strong capacity for heavy metals, such as Pb(II), Cu(II), Cd(II), Zn(II) and Ni(II), with respective equilibrium loadings of 39.6, 36.0, 29.6, 25.1 and 24.5 mg of metal per g of sorbent. Moreover, the heavy metals loaded onto the biosorbent could be released easily with a dilute HCl solution. Zeta potential and surface acidity measurements showed that the tobacco dust was negatively charged over a wide pH range (pH > 2), with a strong surface acidity and a high OH adsorption capacity. Changes in the surface morphology of the tobacco dust as visualized by atomic force microscopy suggested that the sorption of heavy metal ions on the tobacco could be associated with changes in the surface properties of the dust particles. These surface changes appeared to have resulted from a loss of some of the structures on the surface of the particles, owing to leaching in the acid metal ion solution. However, Fourier transform infrared spectroscopy (FTIR) showed no substantial change in the chemical structure of the tobacco dust subjected to biosorption. The heavy metal uptake by the tobacco dust may be interpreted as metal–H ion exchange or metal ion surface complexation adsorption or both.  相似文献   

18.
Heavy metal removal is mainly conducted by adjusting the wastewater pH to form metal hydroxide precipitates. However, in recent years, the xanthate process with a high metal removal efficiency, attracted attention due to its use of sorption/desorption of heavy metals from aqueous solutions. In this study, two kinds of agricultural xanthates, insoluble peanut‐shell xanthate (IPX) and insoluble starch xanthate (ISX), were used as sorbents to treat the copper‐containing wastewater (Cu concentration from 50 to 1,000 mg/L). The experimental results showed that the maximum Cu removal efficiency by IPX was 93.5 % in the case of high Cu concentrations, whereby 81.1 % of copper could rapidly be removed within one minute. Moreover, copper‐containing wastewater could also be treated by ISX over a wide range (50 to 1,000 mg/L) to a level that meets the Taiwan EPA's effluent regulations (3 mg/L) within 20 minutes. Whereas IPX had a maximum binding capacity for copper of 185 mg/g IPX, the capacity for ISX was 120 mg/g ISX. IPX is cheaper than ISX, and has the benefits of a rapid reaction and a high copper binding capacity, however, it exhibits a lower copper removal efficiency. A sequential IPX and ISX treatment (i.e., two‐stage xanthate processes) could therefore be an excellent alternative. The results obtained using the two‐stage xanthate process revealed an effective copper treatment. The effluent (Ce) was below 0.6 mg/L, compared to the influent (C0) of 1,001 mg/L at pH = 4 and a dilution rate of 0.6 h–1. Furthermore, the Cu‐ISX complex formed could meet the Taiwan TCLP regulations, and be classified as non‐hazardous waste. The xanthatilization of agricultural wastes offers a comprehensive strategy for solving both agricultural waste disposal and metal‐containing wastewater treatment problems.  相似文献   

19.
The biosorption of several toxic heavy metals (Pb, Cd, Co, Ni, Zn and Cu) by the exopolysaccharide (EPS) produced by Paenibacillus jamilae, a potential biosorbent for metal remediation and recovery was studied. Firstly, the biochemical composition of this bacterial polymer was determined. Glucose was the most abundant neutral sugar, followed by galactose, rhamnose, fucose and mannose. The polymer presented a high content of uronic acids (28.29%), which may serve as binding sites for divalent cations. The presence of carboxylic groups was also detected by infrared spectroscopy. The EPS presented an interesting affinity for Pb in comparison with the other five metals. Lead biosorption (303.03 mg g−1) was tenfold higher (in terms of mg of metal adsorbed per gram of EPS) than the biosorption of the rest of metals. Biosorption kinetics, the effect of pH and the effect of competitive biosorption were determined. Finally, we found that the EPS was able to precipitate Fe(III), but the EPS-metal precipitate did not form with Fe(II), Pb(II), Cd(II), Co(II), Ni(II), Cu(II) and Zn(II).  相似文献   

20.
Agrius convolvuli haemolymph ferritin was purified by KBr density gradient ultracentrifugation and anion exchange column chromatography. The 670 kDa ferritin was composed of two subunits of 26 kDa and 31 kDa. It was also shown that the protein had an isoelectric point (pI) of pH 7.4. The N‐terminal amino acid sequences of the two subunits were NH2‐DNXYQDVSLDXSQAXNXL (26 kDa subunit) and NH2‐TQXHVNPVNIQRDXVTMHXS (31 kDa subunit). The sequential analysis showed that they had high similarity to lepidopteran ferritin subunits, S‐ and G‐type, respectively. Using electron microscope, it was observed that the protein had a core whose size was about 7 nm. In the amino acid composition of the protein, Glu (13.22%), Asp (10.43%), Pro (9.69%), Leu (9.63%), Ala (9.55%) and Gly (8.49%) were in relatively high contents while Tyr (1.21%), His (2.58%) and Arg (3.10 %) were in low. It was shown that the amount of ferritin in A. convolvuli haemolymph was increased by injection of eight different heavy metal ions, FeCl3, HgCl2, CuSO4, ZnSO4, MnCl2, MgCl2, CrCl3 and CdCl2. Among the ions, Fe3+, Hg2+, Zn4+, Mn2+ and Cd.2+ significantly induced the amount of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号