首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文研究了五种茄科糖苷生物碱(茄碱、查茄碱、边缘茄碱、澳洲茄碱和番茄碱)对两种植物病原真菌白菜白斑病菌和葱紫斑病菌的抑制活性.结果表明番茄碱的抗真菌活性最强,其后依次是查茄碱、边缘茄碱和澳洲茄碱,茄碱的活性最弱;不同浓度茄碱和查茄碱(马铃薯中的两种糖苷生物碱)的混合物均具有协同抗真菌作用,且低浓度的混合物产生的协同作用效果较大;边缘茄碱和澳洲茄碱(龙葵中的两种糖苷生物碱)的混合物基本没有协同抗真菌作用;边缘茄碱和查茄碱的混合物以及澳洲茄碱和茄碱的混合物(均为来自不同植物的糖苷生物碱的混合物)在抗真菌活性上都呈现了相加关系.  相似文献   

2.
Snails (Helix aspersa L.) were fed filter paper treated with the potato glycoalkaloids, alpha-solanine and alpha-chaconine, singly or together. In pure form, both glycoalkaloids deterred feeding, with chaconine being the more active compound. In combination, authentic solanine and chaconine interacted synergistically in their inhibition of feeding. The antifeedant activities of methanolic extracts of tuber peel of the potato varieties Majestic and Sharpe's Express presented via filter paper discs did not differ significantly from those of authentic glycoalkaloid solutions of comparable concentration and ratio. In contrast, feeding inhibition by diluted tuber peel extracts of the variety Homeguard was greater than that elicited by comparable authentic glycoalkaloid solutions suggesting additional inhibitory compound(s) in the peel of this variety. Comparison of data from peel extracts of all three potato varieties and authentic glycoalkaloids indicated that the level of feeding inhibition by the extracts was, at least in part, a consequence of a synergism between solanine and chaconine.  相似文献   

3.
Foliage of potato cv. Desiree was harvested from glasshouse‐cultivated plants of five experimental transgenic lines expressing three different insecticidal proteins (snowdrop lectin, Galanthus nivalis agglutinin (GNA); jackbean lectin, Concanavalin A (Con A), cowpea trypsin inhibitor; (CpTi)), tissue‐cultured control plants and standard control (non‐tissue cultured) plants. The foliage was subdivided into stems, upper, middle and lower leaves and analysed separately by HPLC for the solanidine‐based glycoalkaloids a‐solanine and a‐chaconine. The results demonstrate that one or more stages in the plant transformation process (i.e. insecticidal‐ and marker‐gene insertions, gene expression and tissue culture) resulted in a lower level of leaf glycoalkaloids than that found in either the tissue‐cultured controls or standard controls, based on the selected potato lines transformed for insecticidal protein expression. However, the distribution of glycoalkaloids throughout the plant foliage was unaffected by genetic transformation and tissue culture, with the highest glycoalkaloid levels being observed in the top third of the plant. The importance of investigating unexpected effects of genetic engineering on plant secondary metabolism is discussed from an ecological viewpoint.  相似文献   

4.
《Phytochemistry》1987,26(5):1325-1328
At pH 7.2, the steroidal glycoalkaloid α-chaconine disrupted phosphatidylcholine/cholesterol liposomes whereas α-solanine was virtually without effect. A glycoalkaloid mixture extracted from potato sprouts and comprising approximately equal amounts of solanine and chaconine had, at 150 μM, a lytic effect the same as a 150 μM solution of chaconine only. The apparent synergistic interaction between the two compounds was confirmed using 1:1 mixtures of authentic solanine and chaconine from different sources and of different batches. Combinations (1:1) of solanine or chaconine and tomatine or digitonin (both of which lysed liposomes) or β2-chaconine (which is non-lytic) did not produce synergistic effects. The synergism between solanine and chaconine was observed only when the two compounds were present together, although the order of addition into the test system did not appear crucial. Pretreatment of liposomes with one glycoalkaloid and its subsequent removal did not permanently sensitize the membranes to the second glycoalkaloid. The magnitude of the synergism was dependent on the relative amounts of solanine and chaconine with maximal effects where chaconine comprised 40% or more of the mixture.  相似文献   

5.
Selected plant introduction lines of S. chacoense and S. commersonii contain two major glycoalkaloids, demissine and a new compound called commersonine. In contrast, other plant introduction lines of S. chacoense contain only solanine and chaconine as the major glycoalkaloids. The isolation and characterization of the new glycoalkaloid is described.  相似文献   

6.
At pH 7.2, the potato glycoalkaloid α-chaconine caused release of entrapped peroxidase from phosphatidylcholine liposomes containing different free sterols but was ineffective against sterol-free liposomes. The alkaloid was able to complex with all the tested sterols in vitro although there was no close correlation between the extent of sterol binding and liposome disruption. α-Solanine also complexed with sterols in vitro but had no effects on sterol-containing liposomes under these conditions. Both sterol concentration and alkaloid concentration were limiting factors in the action of chaconine but did not markedly affect that of solanine. Solanine destabilized liposome membranes only at pH values of 8 and above but was less effective than chaconine. The importance of the carbohydrate moiety of glycoalkaloids was further demonstrated by the inability of β2-chaconine to complex with sterols or disrupt liposomes.  相似文献   

7.
Solanum chacoense Bitter, a wild relative of the cultivated potato, produces several glycoalkaloids, including solanine, chaconine, and the leptines. The foliar-specific leptine glycoalkaloids are believed to confer resistance to the Colorado Potato Beetle (CPB). Using two bulked DNA samples composed of high- and low-percent leptine individuals from a segregating F1 population of S. chacoense, we have identified two molecular markers that are closely linked to high percent solanine+chaconine and, conversely, to nil/low percent leptine. One of these, a 1,500-bp RAPD product (UBC370-1500), had a recombination value of 3% in the F1 progeny, indicating tight linkage. UBC370-1500 mapped to the end of the short arm of potato chromosome 1, in the region of a previously mapped major QTL for solanidine, from a S. tuberosum (solanidine)×S. berthaultii (solasodine) cross. Taken together, these results suggest that either (1) a major locus determining solanidine accumulation in Solanum spp. is on chromosome 1 in the region defined by the RFLP markers TG24, CT197, and CT233, or (2) this region of chromosome 1 may harbor two or more important genes which determine accumulation of steroidal aglycones. These findings are important for the genetics of leptine (as well as other glycoalkaloid) accumulation and for the development of CPB-resistant potato varieties. Received: 5 March 1998 / Accepted: 28 July 1998  相似文献   

8.
Potatoes, members of the Solanaceae plant family, serve as a major, inexpensive food source for both energy (starch) and good-quality protein, with worldwide production of about 350 million tons per year. U.S. per capita consumption of potatoes is about 61 kg/year. Potatoes also produce potentially toxic glycoalkaloids, both during growth and after harvest. Glycoalkaloids appear to be more toxic to man than to other animals. The toxicity may be due to anticholinesterase activity of the glycoalkaloids on the central nervous system and to disruptions of cell membranes affecting the digestive system and other organs. The possible contribution of glycoalkaloids to the multifactorial aspects of teratogenicity is inconclusive. Possible safe levels are controversial; guidelines limiting glycoalkaloid content of potato cultivars are currently being debated. This review presents an integrated, critical assessment of the multifaceted aspects of the role glycoalkaloids play in nutrition and food safety; chemistry and analysis; plant physiology, including biosynthesis, distribution, inheritance, host-plant resistance, and molecular biology; preharvest conditions such as soil composition and climate; and postharvest events such as effects of light, temperature, storage time, humidity, mechanical injury, sprouting inhibition, and processing. Further research needs are suggested for each of these categories in order to minimize pre- and postharvest glycoalkaloid synthesis. The overlapping aspects are discussed in terms of general concepts for a better understanding of the impact of glycoalkaloids in plants and in the human diet. Such an understanding can lead to the development of potato varieties with a low content of undesirable compounds and will further promote the utilization of potatoes as a premier food source for animals and humans.  相似文献   

9.
The phytotoxic effect of four glycoalkaloids and two 6-O-sulfated glycoalkaloid derivatives were evaluated by testing their inhibition of cucumber root growth. The bioassays were performed using both compounds singly and in equimolar mixtures, respectively. Cucumber root growth was reduced by chaconine (C), solanine (S), solamargine (SM) and solasonine (SS) with IC50 values of 260 (C), 380 (S), 530 (SM), and 610 μM (SS). The inhibitory effect was concentration-dependent. 6-O-sulfated chaconine and 6-O-sulfated solamargine had no inhibitory effects, which indicated that the carbohydrate moieties play an important role in inhibiting cucumber root growth. The equimolar mixtures of paired glycoalkaloids, both chaconine/solanine and solamargine/solasonine, produced synergistic effects on inhibition of cucumber root growth. By contrast, mixtures of unpaired glycoalkaloids from different plants had no obviously synergistic effects. The growth inhibited plant roots lacked hairs, which implied that inhibition was perhaps at the level of root hair growth.  相似文献   

10.
Plants synthesize a broad range of secondary metabolites that act as natural defenses against plant pathogens and herbivores. Among these, potato plants produce glycoalkaloids (GAs). In this study, we analyzed the effects of the dried extract of fresh potato leaves (EPL) on the biological parameters of the lepidopteran, Galleria mellonella (L.) and compared its activity to one of the main EPL components, the GA α‐solanine. Wax moth larvae were reared from first instar on a diet supplemented with three concentrations of EPL or α‐solanine. Both EPL and α‐solanine affected survivorship, fecundity, and fertility of G. mellonella to approximately the same extent. We evaluated the effect of EPL and α‐solanine on oxidative stress in midgut and fat body by measuring malondialdehyde (MDA) and protein carbonyl (PCO) contents, both biomarkers of oxidative damage. We evaluated glutathione S‐transferase (GST) activity, a detoxifying enzyme acting in prevention of oxidative damage. EPL and α‐solanine altered MDA and PCO concentrations and GST activity in fat body and midgut. We infer that the influence of EPL on G. mellonella is not enhanced by synergistic effects of the totality of potato leaf components compared to α‐solanine alone.  相似文献   

11.
Tubers of six commercially available potato cultivars were placed in bright light (140 jUmol“1 m”2), approximately equivalent to dull daylight, for a continuous period of up to seven days. The tubers were sampled at intervals, scored for degree of greening, freeze-dried and subsequently assessed for glycoalkaloid and chlorophyll content. There were significant differences between the cultivars in their rates of greening and increase in glycoalkaloid content. There was an apparent relationship between the two characters. Increases in the individual glycoalkaloids a–chaconine and a-solanine were also assessed. The results are discussed in terms of the implications for the potato industry.  相似文献   

12.
Plant allelochemicals are nonnutritional chemicals that interfere with the biology of herbivores. We posed the hypothesis that ingestion of a glycoalkaloid allelochemical, α‐solanine, impairs biological parameters of greater wax moths Galleria mellonella. To test this idea, we reared wax moths on artificial diets with 0.015, 0.15, or 1.5 mg/100 g diet of α‐solanine. Addition of α‐solanine to the diet affected survival of seventh‐instar larvae, pupae, and adults; and female fecundity and fertility. The diet containing the highest α‐solanine concentration led to decreased survivorship, fecundity, and fertility. The diets supplemented with α‐solanine led to increased malondialdehyde and protein carbonyl contents in midgut and fat body and the effect was dose‐dependent. Dietary α‐solanine led to increased midgut glutathione S‐transferase activity and to decreased fat body glutathione S‐transferase activitiy. We infer from these findings that α‐solanine influences life history parameters and antioxidative enzyme activities in the midgut and fat body of G. mellonella.  相似文献   

13.
A chemical ecological model can be the basis for defining testable hypotheses concerning human interactions with plants. Selection by Aymara subsistence cultivators against toxic glycoalkaloids in the ongoing domestication of the Bolivian potato cultigen Solanum X ajanhuiriwas used as a specific case study of human interactions with phytochemicals. In taste perception tests, Aymara subjects were able to discriminate between concentrations of pure glycoalkaloids in solution only above 20 mg/100 ml. Taste panel tests of potato clones indicated that glycoalkaloid levels are important to the Aymara in determining quality only as part of a decision-making process involving two character states: too high or acceptable. Glycoalkaloids in potatoes are regarded as toxic to humans above 20 mg/100 g fresh weight. Among the Aymara, a breakpoint in the curve for glycoalkaloid preference appears to occur between 20–38 mg/100 g. This distinction is evident in the Aymara potato taxonomy which distinguishes bitter (luq'i ch'oke) from nonbitter (ch'oke) potatoes.  相似文献   

14.
Two rapid methods for highly selective detection and quantification of the two major glycoalkaloids in potatoes, alpha-chaconine and alpha-solanine, were compared for robustness in high-throughput operations for over 1000 analytical runs using potato tuber samples from field trials. Glycoalkaloids were analyzed using liquid chromatography coupled to tandem mass spectrometry in multiple reaction monitoring mode. An electrospray interface was used in the detection of glycoalkaloids in positive ion mode. Classical reversed phase (RP) and hydrophilic interaction (HILIC) columns were investigated for chromatographic separation, ruggedness, recovery, precision, and accuracy. During the validation procedure both methods proved to be precise and accurate enough in relation to the high degree of endogenous biological variability found for field-grown potato tubers. However, the RP method was found to be more precise, more accurate, and, more importantly, more rugged than the HILIC method for maintaining the analytes' peak shape symmetry in high-throughput operation. When applied to the comparison of six classically bred potato cultivars to six genetically modified (GM) lines engineered to synthesize health beneficial inulins, the glycoalkaloid content in potato peels of all GM lines was found within the range of the six cultivars. We suggest complementing current unbiased metabolomic strategies by validating quantitative analytical methods for important target analytes such as the toxic glycoalkaloids in potato plants.  相似文献   

15.
Biosensors for assay of glycoalkaloids in potato tubers   总被引:1,自引:0,他引:1  
The possibility of practical application of biosensors based on pH-sensitive field-effect transistors and butyrylcholinesterase to glycoalkaloid analysis in potato tubers was studied. The main analytical features of the designed biosensors and measurement conditions were optimized. The biosensor was applied to quantitative analysis of glycoalkaloids in tubers of different potato varieties. The results proved to be in good agreement with those obtained by conventional protocols. Experiments on glucose assay were performed. An inverse correlation between the contents of glucose and glycoalkaloids in potato tubers was demonstrated.  相似文献   

16.
The possibility of commercial application of biosensors based on pH-sensitive field-effect transistors and butyrylcholinesterase to glycoalkaloid analysis in potato tubers was studied. The main analytical features of the designed biosensors and measurement conditions were optimized. The biosensor was applied to quantitative analysis of glycoalkaloids in tubers of different potato varieties. The results proved to be in good agreement with those obtained by conventional protocols. Experiments on glucose assay were performed. An inverse correlation between the contents of glucose and glycoalkaloids in potato tubers was demonstrated.  相似文献   

17.
Leptines of Solanum chacoense are effective natural deterrents against the Colorado potato beetle. Leptines are the acetylated forms of the glycoalkaloids solanine and chaconine and are supposed to be synthesised via hydroxylated derivatives, called leptinines. Inheritance of leptinine production was studied in crosses of closely related S. chacoense genotypes. The segregation data supported a single-gene model for the inheritance of leptinine production. In the segregating F1 population of a S. chacoense cross, AFLP, RFLP and RAPD markers segregating with the leptinine production have been identified. The locus involved in leptinine synthesis was localised to the short arm of chromosome 1 of the potato where a major QTL for solanidine production, and markers with tight linkage to leptine production, have been mapped before. Our data further support the previous finding that the short arm of chromosome 1 is involved in steroid alkaloid synthesis in potato, and suggest that the genes involved in leptinine and leptine production are tightly linked in S. chacoense. Received: 27 June 2000 / Accepted: 4 August 2000  相似文献   

18.
马铃薯糖苷生物碱对人血胆碱酯酶的抑制   总被引:4,自引:0,他引:4  
马铃薯糖苷生物碱是一类有异味有毒性的含氨甾族化合物,其致毒机理与有机磷杀虫剂相似,表现出对人体内胆碱酯酶活性的抑制,使胆碱能神经兴奋增强,引起一系列中毒症状。从块茎萌发芽中提取的总糖苷生物碱的毒性较高,对人血胆碱酯酶的体外抑制率为63.08%,单个糖苷生物碱(α茄碱和α卡茄碱)的毒性较低,抑制率分别为52.08%和41.15%,总糖苷生物碱的水解产物糖苷配基基本无毒性,抑制率仅为11.36%。  相似文献   

19.
Potato cold‐induced sweetening (CIS) is critical for the postharvest quality of potato tubers. Starch degradation is considered to be one of the key pathways in the CIS process. However, the functions of the genes that encode enzymes related to starch degradation in CIS and the activity regulation of these enzymes have received less attention. A potato amylase inhibitor gene known as SbAI was cloned from the wild potato species Solanum berthaultii. This genetic transformation confirmed that in contrast to the SbAI suppression in CIS‐resistant potatoes, overexpressing SbAI in CIS‐sensitive potatoes resulted in less amylase activity and a lower rate of starch degradation accompanied by a lower reducing sugar (RS) content in cold‐stored tubers. This finding suggested that the SbAI gene may play crucial roles in potato CIS by modulating the amylase activity. Further investigations indicated that pairwise protein–protein interactions occurred between SbAI and α‐amylase StAmy23, β‐amylases StBAM1 and StBAM9. SbAI could inhibit the activities of both α‐amylase and β‐amylase in potato tubers primarily by repressing StAmy23 and StBAM1, respectively. These findings provide the first evidence that SbAI is a key regulator of the amylases that confer starch degradation and RS accumulation in cold‐stored potato tubers.  相似文献   

20.
The hatching responses of Globodera rostochiensis (golden potato cyst nematode) to purified and partially-purified preparations of natural (including the potato glycoalkaloids solanine and α-chaconine) and artificial hatching factors (HFs) were bimodal. At least 10 HFs, mostly anionic, were resolved from potato root leachate by a combination of gel permeation and ion-exchange chromatography. Whereas potato roots were the principal source of HFs, haulm leachate also contained such chemicals. Root leachate from aseptically-grown potato plants lacked several HFs which were present in conventionally-produced leachate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号