首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
一株产电菌Nitratireductor sp. WJ5-4的筛选及产电分析   总被引:1,自引:0,他引:1  
【目的】从生物垃圾燃料电池阳极淋洗液中分离一株产电菌WJ5-4,研究其产电特性。【方法】根据菌株的形态、生理生化性质及16S r RNA基因测序分析确定其种属,以该菌株为产电菌,以生物垃圾为底物,构建微生物燃料电池(Microbial fuel cell,MFC),研究在不同接种浓度和底物固含量条件下菌株的产电性能。【结果】菌株WJ5-4被初步鉴定属于Nitratireductor属,当接种量200 m L时可获得最大功率密度135.16 m W/m2、稳定电压370 m V和总有机碳(Total organic carbon,TOC)降解率41.46%。当底物固含量为23%时,可获得最大功率密度163.69 m W/m2、稳定电压434 m V和TOC降解率46.29%。【结论】WJ5-4菌能够利用较高固含量的生物垃圾产电,产电周期较长,为下一步微生物燃料电池处理生物垃圾提供科学依据。  相似文献   

2.
【目的】从土壤中分离获得产电菌纯菌株SE6,鉴定其种类并分析其产电性能。【方法】通过厌氧培养分离得到纯菌株,根据其形态、生理生化性质及16S r RNA基因测序分析确定其种属。以该菌株作为产电菌接种源,液体LB培养基和铁氰化钾溶液分别作为阳极液和阴极液,构建双室微生物燃料电池(Microbial fuel cells,MFCs),研究其产电能力;根据交流阻抗图谱,分析MFCs的内阻。应用循环伏安测试确定该菌株的胞外电子传递方式。并利用扫描电镜对阳极表面产电菌形态进行观察。【结果】菌株SE6的16S r RNA基因序列与Clostridium sporogenes有100%同源性,结合其形态特征和生理生化特性,确定其属于梭菌属(Clostridium)。SE6接种到MFCs中可以获得44.42 m W/m~2的最大功率密度。MFCs的阳极内阻、阴极内阻和欧姆内阻分别为(1488±193)Ω/cm~2、(0.92±0.01)Ω/cm~2和(20.69±1.76)Ω/cm~2。其循环伏安图谱显示体系中存在电化学活性物质且峰值电流随扫速升高线性增大。扫描电镜观察到阳极表面聚集附着着长度约1μm的杆菌。【结论】本研究成功从土壤中分离出具有一定产电能力的菌株C.sporogenes SE6,可直接将电子传递至阳极,其产电过程阻抗较大。  相似文献   

3.
微生物燃料电池(MFC)是利用阳极产电微生物为催化剂降解有机废物直接将化学能转化为电能的装置。在MFC系统中,产电微生物是影响产电性能的核心要素之一。介绍了MFC中产电微生物的最新研究现状,详细讨论了产电微生物的种类、产电机理和产电能力.为产电微生物的富集、驯化、改造和多种菌种优化组合提供思路。  相似文献   

4.
基于微生物燃料电池的反应装置,从污水处理厂曝气池的污泥中通过富集,筛选和基于16S rRNA基因序列的系统发育分析等手段驯化出1株高效产电假单胞菌F026。以F026为阳极产电菌制作微生物燃料电池,考察了底物种类、温度和p H值等因素对微生物燃料电池产电性能的影响。结果表明,F026最适合在以可溶性淀粉为底物,p H为中性偏碱性,温度在30~35℃的环境下生长。在此条件下,微生物燃料电池的最高电压达到500 m V,体积功率密度达到2 W/m3。  相似文献   

5.
产电菌群及电子受体对微生物燃料电池性能的影响   总被引:3,自引:0,他引:3  
采用2种类型的微生物燃料电池--常规微生物燃料电池(S-MFCs,以生活污水作为产电菌群接种源、以硝酸盐作为电子受体)和改进后的微生物燃料电池(A-MFCs,以厌氧发酵液作为产电菌群接种源、以铁氰化物作为电子受体),分析了产电菌群和电子受体的改进对微生物燃料电池产电性能的影响.结果表明:产电菌群和电子受体对MFCs驯化周期和运行周期具有显著影响,使驯化周期由S-MFCs的500 h缩短到A-MFCs的430 h,运行周期由S-MFCs的100 h增加到A-MFCs的350 h;改进后的微生物燃料电池使COD去除率提升了25%,使电压输出提高了约300%.选择合适的产电菌菌种和电子受体标准电极电势是微生物燃料电池性能提升的基础.  相似文献   

6.
介绍微生物燃料电池的基本工作原理。根据电子传递方式阳极产电微生物分为无需中间体微生物和需中间体微生物。对阴极进行不同反应所涉及的最终电子受体进行了概述,并展望了微生物燃料电池的应用前景。  相似文献   

7.
一株海洋产电菌Shewanella sp. S2的筛选和产电分析   总被引:1,自引:1,他引:0  
以厦门白城海域的潮间带表面沉积物为菌种来源筛选得到一株具有电催化活性的菌株S2,该菌株的16S rRNA和gyrB基因发育树与Shewanella oneidensis MR-1同支,相似性分别为98.5%和87%,葡萄糖、木糖、半乳糖等碳源利用及最佳生长的NaCl浓度与S.oneidensis MR-1有显著差别,因此初步鉴定为Shewanella属菌株,命名为Shewanella sp.S2。初步研究了菌株S2产电活性,在以乳酸作为碳源产电时,电压最高为150mV,相应的电流密度为66.1mA/m2。  相似文献   

8.
【背景】微生物燃料电池(Microbial Fuel Cell,MFC)作为一种新型的燃料电池资源,在产电的同时可应用于污水处理领域,达到资源最大化的目的。【目的】从MFC中分离获得一株可培养微生物,研究其产电特性及在污水处理中的微生物絮凝、重金属耐受、苯酚降解性能,为扩展产电菌资源库提供理论基础。【方法】利用WO_3纳米探针从MFC阳极中筛选获得一株具备产电和絮凝性能的菌株,命名为EFS1。运用循环伏安分析结合扫描电镜观测阳极电极;改变外电阻测定极化曲线和功率密度曲线。测定菌株的絮凝、重金属耐受及苯酚降解性能。【结果】经16S rRNA基因序列分析,结合形态学和生理生化鉴定菌株EFS1为微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)。菌株EFS1具有稳定的产电周期,周期电压最高可达300m V,功率密度可达56.25m W/m~2;扫描电镜发现菌株存在直接接触电极及分泌电子中介体传递电子的方式;MFC内阻为1 000Ω左右。有氧条件下菌株的絮凝率可达到70%,存在电子受体的无氧环境中可达到80%;该菌株还具有良好的Cd~(2+)、Cu~(2+)、Mn~(2+)耐受性及苯酚降解性能,在48 h、2–4 mg/L时苯酚降解率达到了100%。【结论】研究验证了产电菌EFS1具备絮凝能力、重金属耐受、苯酚降解的可能性,为产电菌的开发及污水处理方面提供理论依据。  相似文献   

9.
微生物电解池阳极生物膜功能菌群构建及群落特征分析   总被引:2,自引:0,他引:2  
【目的】微生物电解电池(MEC)是近几年快速发展的利用电极呼吸微生物快速降解有机质,通过较小的辅助外加电压直接生成氢气的新工艺。MEC能够有效地富集高效率电子传递功能菌群,是未来工艺放大和快速启动的关键。【方法】采用不同驯化方法构建MEC电极微生物菌群,通过单链构象多肽性技术(Single-strand conformation poly-morphism,SSCP)快速检测分析启动后电子传递功能菌群特征。【结果】阳极生物膜接种MEC可以实现2 d的快速启动,库仑效率达到20%以上,7 d获得稳定产氢,氢气转化率达到30%,能量回收效率达到90%以上。通过SSCP群落分析发现,采用微生物燃料电池阳极生物膜构建的MEC主要电子传递功能相关的菌群包括Pseudomonas sp.、Flavobacterium sp.、Ochrobactrum sp.,而直接由产氢MEC阳极生物膜新启动的MEC功能菌群组成丰度更大,包括电子传递效能更高的Desulfovibrio、Pseudomonas和Shewanella成为主要优势电子传递菌群。通过稳定产氢运行,MEC阳极生物膜优势菌群中存在的较大比例的厌氧菌与电子传递辅助菌对体系的快速稳定运行十分重要。【结论】与MFC阳极生物膜相比,MEC生物膜作为启动菌源能够获得多样性更丰富的电极功能菌群,其库仑效率和产氢效率更具优势。  相似文献   

10.
产电微生物是一类具有胞外电子转移能力的微生物,能够将有机物中储存的化学能转化为电能,其作为微生物电催化系统的催化剂,已经成为环境和能源领域的研究热点。但目前所发现的产电菌,产电机制有所差异,产电能力参差不齐,菌株的性能从根本上影响了其产电能力,其产电能力不足成为限制微生物燃料电池在工业上广泛应用的主要瓶颈。目前,通过理性设计或定向进化等改造方法,难以实现产电微生物在复杂多样环境中的广泛应用。通过定向筛选策略,建立一套快速、高效的筛选鉴定技术,挖掘环境中性能优异的产电微生物,是促进其广泛应用的有效途径。文中基于产电微生物的种类,总结回顾了现有的产电微生物的筛选鉴定方法,并对其研究前景进行了展望。  相似文献   

11.
Exoelectrogenic bacteria have potential for many different biotechnology applications due to their ability to transfer electrons outside the cell to insoluble electron acceptors, such as metal oxides or the anodes of microbial fuel cells (MFCs). Very few exoelectrogens have been directly isolated from MFCs, and all of these organisms have been obtained by techniques that potentially restrict the diversity of exoelectrogenic bacteria. A special U-tube-shaped MFC was therefore developed to enrich exoelectrogenic bacteria with isolation based on dilution-to-extinction methods. Using this device, we obtained a pure culture identified as Ochrobactrum anthropi YZ-1 based on 16S rRNA gene sequencing and physiological and biochemical characterization. Strain YZ-1 was unable to respire using hydrous Fe(III) oxide but produced 89 mW/m(2) using acetate as the electron donor in the U-tube MFC. Strain YZ-1 produced current using a wide range of substrates, including acetate, lactate, propionate, butyrate, glucose, sucrose, cellobiose, glycerol, and ethanol. Like another exoelectrogenic bacterium (Pseudomonas aeruginosa), O. anthropi is an opportunistic pathogen, suggesting that electrogenesis should be explored as a characteristic that confers advantages to these types of pathogenic bacteria. Further applications of this new U-tube MFC system should provide a method for obtaining additional exoelectrogenic microorganisms that do not necessarily require metal oxides for cell respiration.  相似文献   

12.
Microbial fuel cells (MFCs) have been used to generate electricity from various organic compounds such as acetate, glucose, and lactate. We demonstrate here that electricity can be produced in an MFC using cellulose as the electron donor source. Tests were conducted using two-chambered MFCs, the anode medium was inoculated with mixed or pure culture of cellulose-degrading bacteria Nocardiopsis sp. KNU (S strain) or Streptomyces enissocaesilis KNU (K strain), and the catholyte in the cathode compartment was 50mM ferricyanide as catholyte. The power density for the mixed culture was 0.188mW (188mW/m(2)) at a current of 0.5mA when 1g/L cellulose was used. However, the power density decreased as the cellulose concentration in the anode compartment decreased. The columbic efficiencies (CEs) ranged from 41.5 to 33.4%, corresponding to an initial cellulose concentration of 0.1-1.0g/L. For the pure culture, cellobioase enzyme was added to increase the conversion of cellulose to simple sugars, since electricity production is very low. The power densities for S and K strain pure cultures with cellobioase were 162mW/m(2) and 145mW/m(2), respectively. Cyclic voltammetry (CV) experiments showed the presence of peaks at 380, 500, and 720mV vs. Ag/AgCl for the mixed bacterial culture, indicating its electrochemical activity without an external mediator. Furthermore, this MFC system employs a unique microbial ecology in which both the electron donor (cellulose) and the electron acceptor (carbon paper) are insoluble.  相似文献   

13.
微生物燃料电池利用乳酸产电性能与微生物群落分布特征   总被引:3,自引:0,他引:3  
【目的】为探讨以乳酸为基质的微生物燃料电池(Microbial fuel cell,MFC)产电性能以及微生物群落在阳极膜、悬浮液、阳极沉淀污泥中的分布特征,【方法】试验建立了双室MFC,以乳酸为阳极主要碳源,研究了反应器的启动过程及产电效能,同时以电镜和PCR-变性梯度凝胶电泳(Denaturing gradient gelelectrophoresis,DGGE)技术解析了微生物群落的空间分布特征。【结果】结果表明,反应器启动第7天时外电压达到0.56 V,当外阻为80Ω时,电流密度为415 mA/m2,MFC的功率密度达到最大值82 mW/m2。电镜观察发现大量杆菌附着在阳极表面,结合较为紧密;DGGE图谱显示阳极膜表面微生物与种泥最为相似,与阳极悬浮液、底部沉淀污泥中的主要菌群一致,条带序列与睾丸酮丛毛单胞菌(Comamonas testosteroni)和布氏弓形菌(Arcobacter butzleri)等最为相似。【结论】本研究表明以乳酸为基质MFC可产生较高的功率密度,阳极附着的优势菌与接种污泥来源密切相关。  相似文献   

14.
Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from a variety of biodegradable substrates, including cellulose. Particulate materials have not been extensively examined for power generation in MFCs, but in general power densities are lower than those produced with soluble substrates under similar conditions likely as a result of slow hydrolysis rates of the particles. Cellulases are used to achieve rapid conversion of cellulose to sugar for ethanol production, but these enzymes have not been previously tested for their effectiveness in MFCs. It was not known if cellulases would remain active in an MFC in the presence of exoelectrogenic bacteria or if enzymes might hinder power production by adversely affecting the bacteria. Electricity generation from cellulose was therefore examined in two-chamber MFCs in the presence and absence of cellulases. The maximum power density with enzymes and cellulose was 100 +/- 7 mW/m(2) (0.6 +/- 0.04 W/m(3)), compared to only 12 +/- 0.6 mW/m(2) (0.06 +/- 0.003 W/m(3)) in the absence of the enzymes. This power density was comparable to that achieved in the same system using glucose (102 +/- 7 mW/m(2), 0.56 +/- 0.038 W/m(3)) suggesting that the enzyme successfully hydrolyzed cellulose and did not otherwise inhibit electricity production by the bacteria. The addition of the enzyme doubled the Coulombic efficiency (CE) to CE = 51% and increased COD removal to 73%, likely as a result of rapid hydrolysis of cellulose in the reactor and biodegradation of the enzyme. These results demonstrate that cellulases do not adversely affect exoelectrogenic bacteria that produce power in an MFC, and that the use of these enzymes can increase power densities and reactor performance.  相似文献   

15.
New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell   总被引:1,自引:0,他引:1  
Aims: Isolation, identification and characterization of a new exoelectrogenic bacterium from a microbial fuel cell (MFC). Methods and Results: Exoelectrogenic bacterial strain SX‐1 was isolated from a mediator‐less MFC by conventional plating techniques with ferric citrate as electron acceptor under anaerobic condition. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy‐48 being the most closely related species. The bacterial strain SX‐1 produced electricity from citrate, acetate, glucose, sucrose, glycerol and lactose in MFCs with the highest current density of 205 mA m?2 generated from citrate. Cyclic voltammetry analysis indicated that membrane‐associated proteins may play an important role in facilitating the electrons transferring from bacteria to electrode. Conclusions: This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors. Citrobacter strain SX‐1 is capable of generating electricity from a wide range of substrates in MFCs. Significance and Impact of the Study: This finding increases the known diversity of power generating exoelectrogens and provided a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX‐1 increases the application potential of MFCs in renewable energy generation and waste treatment.  相似文献   

16.
The purpose of this study was to determine the effect of enrichment procedure on the performance and microbial diversity of an air-cathode microbial fuel cell (MFC) which was explored for simultaneous azo dye decolorization and electricity generation. Two different enrichment procedures in which glucose and Congo red were added into the MFCs sequentially (EP1) or simultaneously (EP2) were tested by operating parallel MFCs independently for more than 6 months. The power density, electrode potential, Congo red decolorization, biofilm morphology, and bacterial diversity of the MFCs under the two enrichment procedures were compared and investigated. The results showed that the enrichment procedures have a negligible effect on the dye decolorization, but significantly affected the electricity generation. More than 90% decolorization at dye concentration of 300 mg/L was achieved within 170 h for the two tested enrichment procedures. However, the MFC with EP2 achieved a maximum power density of 192 mW/m2, which was 75% higher than that of the MFC with EP1 (110 mW/m2). The depressed surfaces of the bacteria in the MFC with EP1 indicated the allergic response caused by the subsequent addition of Congo red. 16S rRNA sequencing analysis demonstrated a phylogenetic diversity in the communities of the anode biofilm and showed clear differences between the anode-attached populations in the MFCs with a different enrichment procedure. This study suggests that the enrichment procedure is important for the MFC explored for simultaneous dye decolorization and electricity generation.  相似文献   

17.
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m2 (20 W/m3). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.  相似文献   

18.
The performance and dynamics of the bacterial communities in the biofilm and suspended culture in the anode chamber of sucrose-fed microbial fuel cells (MFCs) were studied by using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes followed by species identification by sequencing. The power density of MFCs was correlated to the relative proportions of species obtained from DGGE analysis in order to detect bacterial species or taxonomic classes with important functional role in electricity production. Although replicate MFCs showed similarity in performance, cluster analysis of DGGE profiles revealed differences in the evolution of bacterial communities between replicate MFCs. No correlation was found between the proportion trends of specific species and the enhancement of power output. However, in all MFCs, putative exoelectrogenic denitrifiers and sulphate-reducers accounted for approximately 24% of the bacterial biofilm community at the end of the study. Pareto–Lorenz evenness distribution curves extracted from the DGGE patterns obtained from time course samples indicated community structures where shifts between functionally similar species occur, as observed within the predominant fermentative bacteria. These results suggest the presence of functional redundancy within the anodic communities, a probable indication that stable MFC performance can be maintained in changing environmental conditions. The capability of bacteria to adapt to electricity generation might be present among a wide range of bacteria.  相似文献   

19.
The anode biofilm in a microbial fuel cell (MFC) is composed of diverse populations of bacteria, many of whose capacities for electricity generation are unknown. To identify functional populations in these exoelectrogenic communities, a culture-dependent approach based on dilution to extinction was combined with culture-independent community analysis. We analyzed the diversity and dynamics of microbial communities in single-chamber air-cathode MFCs with different anode surfaces using denaturing gradient gel electrophoresis based on the 16S rRNA gene. Phylogenetic analyses showed that the bacteria enriched in all reactors belonged primarily to five phylogenetic groups: Firmicutes, Actinobacteria, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria. Dilution-to-extinction experiments further demonstrated that Comamonas denitrificans and Clostridium aminobutyricum were dominant members of the community. A pure culture isolated from an anode biofilm after dilution to extinction was identified as C. denitrificans DX-4 based on 16S rRNA sequence and physiological and biochemical characterizations. Strain DX-4 was unable to respire using hydrous Fe(III) oxide but produced 35 mW/m2 using acetate as the electron donor in an MFC. Power generation by the facultative C. denitrificans depends on oxygen and MFC configuration, suggesting that a switch of metabolic pathway occurs for extracellular electron transfer by this denitrifying bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号