首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Robust and efficient synthetic method for forming DNA microarrays   总被引:9,自引:3,他引:6       下载免费PDF全文
The field of DNA microarray technology has necessitated the cooperative efforts of interdisciplinary scientific teams to achieve its primary goal of rapidly measuring global gene expression patterns. A collaborative effort was established to produce a chemically reactive surface on glass slide substrates to which unmodified DNA will covalently bind for improvement of cDNA microarray technology. Using the p-aminophenyl trimethoxysilane (ATMS)/diazotization chemistry that was developed, microarrays were fabricated and analyzed. This immobilization method produced uniform spots containing equivalent or greater amounts of DNA than commercially available immobilization techniques. In addition, hybridization analyses of microarrays made with ATMS/diazotization chemistry showed very sensitive detection of the target sequence, two to three orders of magnitude more sensitive than the commercial chemistries. Repeated stripping and re-hybridization of these slides showed that DNA loss was minimal, allowing multiple rounds of hybridization. Thus, the ATMS/diazotization chemistry facilitated covalent binding of unmodified DNA, and the reusable microarrays that were produced showed enhanced levels of hybridization and very low background fluorescence.  相似文献   

2.
A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques.  相似文献   

3.
A facile and efficient method for direct immobilization of phosphorylated oligonucleotides on an epoxy-activated glass surface is described. The new immobilization strategy has been analyzed for its performance in DNA microarray under both microwave and thermal conditions. It reflects high immobilization efficiency ( approximately 23%), and signal-to-noise ratio ( approximately 98) and resulted in high hybridization efficiency ( approximately 36%) in comparison to those obtained with standard methods, viz., NTMTA ( approximately 9.76%) and epoxide-amine ( approximately 9.82%). The probes immobilized through the new strategy were found to be heat-stable, since the performance of microarray decreased by only approximately 7% after subjecting it to 20 PCR-like heat cycles, suggesting that the chemistry could be used in integrated PCR/microarray devices. The immobilization of probes following the proposed chemistry resulted in spots of superior quality in terms of spot morphology, spot homogeneity, and signal reproducibility. The constructed microarrays have been successfully used for the discrimination of nucleotide mismatches. In conclusion, these features make the new immobilization strategy ideal for facile, efficient, and cost-effective manufacturing of DNA microarrays.  相似文献   

4.
Several methods for the quantitative detection of different compounds, e.g., L‐amino acids, sugars or alcohols in liquid media were developed by application of an automatic measuring unit including a fluid chip‐calorimeter FCC‐21. For this purpose, enzymes were immobilized covalently on the inner and outer surface of CPG (controlled porous glass)‐spherules with an outer diameter of 100 μm and filled into a micro flow‐through reaction chamber (VR = 20 μL). The design of the measuring cell allows for easy insertion into the calorimeter device of a stored series of comfortably pre‐fabricated measuring cells. These cells can be filled with different enzyme immobilizates. Different oxidases were used and co‐immobilized with catalase for the improvement of the detection sensitivity. A signal amplification could be achieved up to a factor of 3.5 with this configuration. β‐D‐glucose, ethanol and L‐lysine could be detected in a range of 0.25–1.75 mM using glucose oxidase, alcohol oxidase and lysine oxidase. The group of oxidases in combination with the enzymatic catalysis of the intermediate H2O2 allows the quantitative detection of a large number of analytes. A good measurement and storage stability could be achieved for several weeks by this immobilization method. In addition to enzyme‐based detection reactions, it was shown that living microorganisms can be immobilized in the reaction chamber. Thus, the system can be used as a whole‐cell biosensor. The quantitative detection of phenol in the range of 10–100 μM could be performed using the actinomycete Rhodococcus sp. immobilized on glass beads by means of embedding into polymers.  相似文献   

5.
We describe in this paper the preparation and characterization of semicarbazide glass slides and their use for the fabrication of microarrays using site-specific alpha-oxo semicarbazone ligation. The functional density and homogeneity of the semicarbazide glass slides were optimized by analyzing the reactivity of the layer toward a synthetic glyoxylyl fluorescent probe. Oligonucleotide microarrays were prepared by site-specific immobilization of glyoxylyl oligodeoxynucleotides. The slides were directly used in the hybridization assays using fluorescence detection and displayed a significant gain in sensibility as compared to the aldehyde glass slide/amino oligodeoxynucleotide chemistry. Semicarbazide slides were also used for the immobilization of a biotinylated peptide alpha-oxo aldehyde. The peptide microarrays allowed model interaction studies with streptavidin or an anti-biotin antibody.  相似文献   

6.
The use of heterogeneous biocatalysis in industrial applications is advantageous and the enzyme stability improvement is a continuous challenge. Therefore, we designed β‐galactosidase heterogeneous biocatalysts by immobilization, involving the support synthesis and enzyme selection (from Bacillus circulans, Kluyveromyces lactis, and Aspergillus oryzae). The underivatized, tailored, macro‐mesoporous silica exhibited high surface area, offered high enzyme immobilization yields and activity. Its chemical activation with glyoxyl groups bound the enzyme covalently, which suppressed lixiviation and conferred higher pH and thermal stability (120‐fold than for the soluble enzyme), without observable reduction of activity/stability due to the presence of silica. The best balance between the immobilization yield (68%), activity (48%), and stability was achieved for Bacillus circulans β‐galactosidase immobilized on glyoxyl‐activated silica, without using stabilizing agents or modifying the enzyme. The enzyme stabilization after immobilization in glyoxyl‐activated silica was similar to that observed in macroporous agarose‐glyoxyl support, with the reported microbiological and mechanical advantages of inorganic supports. The whey lactolysis at pH 6.0 and 25°C by using this catalyst (1 mg ml?1, 290 UI g?1) was still 90%, even after 10 cycles of 10 min, in batch process but it could be also implemented on continuous processes at industrial level with similar results.  相似文献   

7.
Microarrays have rapidly become an indispensable tool for gene analysis. Microarray experiments can be cost prohibitive, however, largely due to the price of the arrays themselves. Whilst different methods for stripping filter arrays on membranes have been established, only very few protocols are published for thermal and chemical stripping of microarrays on glass. Most of these protocols for stripping microarrays on glass were developed in combination with specific surface chemistry and different coatings for covalently immobilizing presynthesized DNA in a deposition process. We have developed a method for stripping commercial in situ microarrays using a multi-step procedure. We present a method that uses mild chemical degradation complemented by enzymatic treatment. We took advantage of the differences in biochemical properties of covalently linked DNA oligonucleotides on in situ synthesized microarrays and the antisense cRNA hybridization probes. The success of stripping protocols for microarrays on glass was critically dependent on the type of arrays, the nature of sample used for hybridization, as well as hybridization and washing conditions. The protocol employs alkali hydrolysis of the cRNA, several enzymatic degradation steps using RNAses and Proteinase K, combined with appropriate washing steps. Stripped arrays were rehybridized using the same protocols as for new microarrays. The stripping method was validated with microarrays from different suppliers and rehybridization of stripped in situ arrays yielded comparable results to hybridizations done on unused, new arrays with no significant loss in precision or accuracy. We show that stripping of commercial in situ arrays is feasible and that reuse of stripped arrays gave similar results compared to unused ones. This was true even for biological samples that show only slight differences in their expression profiles. Our analyses indicate that the stripping procedure does not significantly influence data quality derived from post-primary hybridizations. The method is robust, easy to perform, inexpensive, and results after reuse are of comparable accuracy to new arrays.  相似文献   

8.
In this study, the combined use of the selectivity of metal chelate affinity chromatography with the capacity of epoxy supports to immobilize poly‐His‐tagged recombinant benzoylformate decarboxylase from Pseudomonas putida (BFD, E.C. 4.1.1.7) via covalent attachment is shown. This was achieved by designing tailor‐made magnetic chelate–epoxy supports. In order to selectively adsorb and then covalently immobilize the poly‐His‐tagged BFD, the epoxy groups (300 µmol epoxy groups/g support) and a very small density of Co2+‐chelate groups (38 µmol Co2+/g support) was introduced onto magnetic supports. That is, it was possible to accomplish, in a simple manner, the purification and covalent immobilization of a histidine‐tagged recombinant BFD. The magnetically responsive biocatalyst was tested to catalyze the carboligation reactions. The benzoin condensation reactions were performed with this simple and convenient heterogeneous biocatalyst and were comparable to that of a free‐enzyme‐catalyzed reaction. The enantiomeric excess (ee) of (R)‐benzoin was obtained at 99 ± 2% for the free enzyme and 96 ± 3% for the immobilized enzyme. To test the stability of the covalently immobilized enzyme, the immobilized enzyme was reused in five reaction cycles for the formation of chiral 2‐hydroxypropiophenone (2‐HPP) from benzaldehyde and acetaldehyde, and it retained 96% of its original activity after five reaction cycles. Chirality 27:635–642, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead‐Glu) or carboxyl groups through acid solution (Immobead‐Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae β‐galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead‐Epx) and modified supports. Immobilization yield and efficiency were tested as a function of protein loading (10–500 mg g?1 support). Gal was efficiently immobilized on the Immobeads with an immobilization efficiency higher than 75% for almost all supports and protein loads. Immobilization yields significantly decreased when protein loadings were higher than 100 mg g?1 support. Gal immobilized on Immobead‐Glu and Immobead‐Ac retained approximately 60% of its initial activity after 90 days of storage at 4°C. The three immobilized Gal derivatives presented higher half‐lifes than the soluble enzyme, where the half‐lifes were twice higher than the free Gal at 73°C. All the preparations were moderately operationally stable when tested in lactose solution, whey permeate, cheese whey, and skim milk, and retained approximately 50% of their initial activity after 20 cycles of hydrolyzing lactose solution. The modification of the support with glutaraldehyde provided the most stable derivative during cycling in cheese whey hydrolysis. Our results suggest that the Immobead 150 is a promising support for Gal immobilization. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:934–943, 2018  相似文献   

10.
DNA microarrays with PAMAM dendritic linker systems   总被引:6,自引:4,他引:2       下载免费PDF全文
The DNA microarray-based analysis of single nucleotide polymorphisms (SNPs) is important for the correlation of genetic variations and individual phenotypes, and for locating disease-causing genes. To facilitate the development of surfaces suitable for immobilization of oligonucleotides, we report here a novel method for the surface immobilization of DNA using pre-fabricated polyamidoamine (PAMAM) starburst dendrimers as mediator moieties. Dendrimers containing 64 primary amino groups in their outer sphere are covalently attached to silylated glass supports and, subsequently, the dendritic macromolecules are modified with glutaric anhydride and activated with N-hydroxysuccinimide. As a result of the dendritic PAMAM linker system the surfaces reveal both a very high immobilization efficiency for amino-modified DNA-oligomers, and also a remarkable high stability during repeated regeneration and re-using cycles. The performance of dendrimer-based DNA microarrays in the discrimination of SNPs is demonstrated.  相似文献   

11.
Successful use and reliability of microarray technology is highly dependent on several factors, including surface chemistry parameters and accessibility of cDNA targets to the DNA probes fixed onto the surface. Here, we show that functionalisation of glass slides with homemade dendrimers allow production of more sensitive and reliable DNA microarrays. The dendrimers are nanometric structures of size-controlled diameter with aldehyde function at their periphery. Covalent attachment of these spherical reactive chemical structures on amino-silanised glass slides generates a reactive ~100 Å layer onto which amino-modified DNA probes are covalently bound. This new grafting chemistry leads to the formation of uniform and homogenous spots. More over, probe concentration before spotting could be reduced from 0.2 to 0.02 mg/ml with PCR products and from 20 to 5 µM with 70mer oligonucleotides without affecting signal intensities after hybridisation with Cy3- and Cy5-labelled targets. More interestingly, while the binding capacity of captured probes on dendrimer-activated glass surface (named dendrislides) is roughly similar to other functionalised glass slides from commercial sources, detection sensitivity was 2-fold higher than with other available DNA microarrays. This detection limit was estimated to 0.1 pM of cDNA targets. Altogether, these features make dendrimer-activated slides ideal for manufacturing cost-effective DNA arrays applicable for gene expression and detection of mutations.  相似文献   

12.
Poor hydrogen production performance and low biomass limit the practical application of photo‐fermentation. To improve the immobilization capability of bacteria and hydrogen production performance, activated carbon fibers (ACFs) were modified by acidic, alkaline, and neutral solutions. The modified ACFs were further used in the anaerobic fluidized bed photo‐reactor (AFBPR) to explore its continuous operation characteristics. Results showed that among the three reagents, nitric acid was the most efficient for ACF modification, and the maximum yield and production rate of hydrogen increased between about 33.6% and 65.8% compared to the control. Furthermore, with the optimal influent glutamate concentration (10 mmol L?1) and light intensity (4000 lux), the AFBPR gave efficient and stable performance with hydrogen yield of 2.26 mol H2 mol?1 acetate and hydrogen production rate of 25.8 mL L?1 h?1. The results showed the potential of using the AFBPR with HNO3‐modified ACF carriers for the large‐scale production of bio‐hydrogen.  相似文献   

13.
A comparison was made of the effect of glyphosate (Roundup®Plus), a post‐emergency applied herbicide, and of Harness®GTZ, a pre‐emergency applied herbicide, on the rhizobacterial communities of genetically modified NK603 glyphosate‐tolerant maize. The potential effect was monitored by direct amplification, cloning and sequencing of soil DNA encoding 16S rRNA, rhizobacterial DNA hybridization to commercially available genome‐wide microarrays from the soil bacterium Streptomyces coelicolor, and high‐throughput DNA pyrosequencing of the bacterial DNA coding for 16S rRNA hypervariable V6 region. The results obtained strongly suggest that both herbicides do in fact affect the maize rhizobacterial communities, glyphosate being, to a great extent, the environmentally less aggressive herbicide.  相似文献   

14.
In this work, horseradish peroxidase (HRP) was immobilized on dimyristoylphosphatidylcholine (DMPC) bilayers supported on Au (111) by dithiotreitol (DTT) self‐assembled monolayers and used as a nanostructured electrochemical biosensor to dopamine determination. The morphology of the phospholipid bilayers and the immobilization of HRP to these layers were characterized by atomic force microscopy (AFM). Square‐wave voltammetry (SWV) experiments were done to investigate the performance of the HRP‐modified electrode. The AFM images indicate that the enzyme is adsorbed at the external layer of the lipid bilayer and, although the electrical charges on the surface were not measured, the enzyme and phospholipids surface interaction occurs probably by electrostatic forces due to the pH used in the experiments. Interestingly, the present system can be used as one‐shot sensor for the rapid detection of dopamine. The analytical performance of this system was linear for dopamine concentrations from 3.3 × 10?5 to 1.3 × 10?3 mol L?1 (r = 0.9997) with a detection limit of 2.0 × 10?6 mol L?1. Our results indicate that the use of HRP‐DMPC bilayer system may be useful not only in developing new nanostructured materials for technological purposes, but could be very useful in fundamental studies to investigate the interactions between different micro‐and macromolecules, even with soluble proteins, and lipid membranes. Biotechnol. Bioeng. 2013; 110: 374–382. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Galactooligosaccharides (GOS) are prebiotics produced from lactose through an enzymatic reaction. Employing an immobilized enzyme may result in cost reductions; however, the changes in its kinetics due to immobilization has not been studied. This study experimentally determined the optimal reaction conditions for the production of GOS from lactose by β‐galactosidase (EC 3.2.1.23) from Kluyveromyces lactis covalently immobilized to a polysiloxane‐polyvinyl alcohol (POS‐PVA) polymer activated with glutaraldehyde (GA), and to study the transgalactosylation kinetics. Yield immobilization was 99 ± 1.1% with 78.5 ± 2.4% enzyme activity recovery. An experimental design 24 with 1 center point and 2 replicates was used. Factors were lactose [L], enzyme concentration [E], pH and temperature (T). Response variables were glucose and galactose as monosaccharides [G1], residual lactose [Lac]r and GOS as disaccharides [G2] and trisaccharides [G3]. Best conditions were pH 7.1, 40 °C, 270 gL?1 initial lactose concentration and 6 U mL?1 enzyme concentration, obtaining 25.46 ± 0.01 gL?1 yield of trisaccharides. Although below the HPLC‐IR detection limit, tetrasaccharides were also identified after 115 min of reaction. The immobilization protocol was then optimized by diminishing total reactant volumes : support ratio, resulting in improved enzyme activity synthesizing 43.53 ± 0.02 gL?1 of trisaccharides and 13.79 ± 0.21 gL?1 of tetrasaccharides, and after four cycles remaining relative activity was 94%. A reaction mechanism was proposed through which a mathematical model was developed and rate constants were estimated, considering a pseudo steady‐state hypothesis for two concomitant reactions, and from this simplified analysis, the reaction yield could eventually be improved. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1568–1578, 2017  相似文献   

16.
Enzymatic activities of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) participating in the nitrogen metabolism and related ammonium absorption were assayed after the microalga Chlorella vulgaris Beij. was jointly immobilized with the microalgae‐growth‐promoting bacterium Azospirillum brasilense. At initial concentrations of 3, 6, and 10 mg · L?1 NH4+, joint immobilization enhances growth of C. vulgaris but does not affect ammonium absorption capacity of the microalga. However, at 8 mg · L?1 NH4+, joint immobilization enhanced ammonium absorption by the microalga without affecting the growth of the microalgal population. Correlations between absorption of ammonium per cell and per culture showed direct (negative and positive) linear correlations between these parameters and microalga populations at 3, 6, and 10 mg · L?1 NH4+, but not at 8 mg · L?1 NH4+, where the highest absorption of ammonium occurred. In all cultures, immobilized and jointly immobilized, having the four initial ammonium concentrations, enzymatic activities of Chlorella are affected by A. brasilense. Regardless of the initial concentration of ammonium, GS activity in C. vulgaris was always higher when jointly immobilized and determined on a per‐cell basis. When jointly immobilized, only at an initial concentration of 8 mg · L?1 NH4+ was GDH activity per cell higher.  相似文献   

17.
Lithium‐oxygen batteries represent a significant scientific challenge for high‐rate and long‐term cycling using oxygen electrodes that contain efficient electrocatalysts. The mixed transition metal oxide catalysts provide the most efficient catalytic activity for partial heterogeneous surface cations with oxygen vacancies as the active phase. They include multiple oxidation states and oxygen vacancies. Here, using a combination of transmission electron microscopy, differential electrochemical mass spectrometry, X‐ray photoelectron spectroscopy, and electrochemical properties to probe the surface of the MnMoO4 nanowires, it is shown that the intrinsic MnMoO4 oxygen vacancies on the oxygen electrode are an effective strategy to achieve a high reversibility and high efficiency for lithium‐oxygen (Li‐O2) batteries. The modified MnMoO4 nanowires exhibit a highly stable capacity at a fixed capacity of 5000 mA h gsp?1 (calculated weight of Super P carbon black) during 50 cycles, a high‐rate capability at a current rate of 3000 mA gsp?1 during 70 cycles, and a long‐term reversible capacity during 188 cycles at a fixed capacity of 1000 mA h gsp?1. It is demonstrated that this strategy for creating mixed transition metal oxides (e.g., MnMoO4) may pave the way for the new structural design of electrocatalysts for Li‐O2 batteries.  相似文献   

18.
The protonation states of the two active‐site lysines (Lys69 and Lys235) of PBP 6 of Escherichia coli were explored to understand the active site chemistry of this enzyme. Each lysine was individually mutated to cysteine, and the resultant two mutant proteins were purified to homogeneity. Each protein was denatured, and its cysteine was chemically modified to produce an S‐aminoethylated cysteine (γ‐thialysine) residue. Following renaturation, the evaluation of the kinetics of the dd ‐carboxypeptidase activity of PBP 6 as a function of pH was found consistent with one lysine in its free‐base (Lys69) and the other in the protonated state (Lys235) for optimal catalysis. The experimental estimates for their pKa values were compared with the pKa values calculated computationally, using molecular‐dynamics simulations and a thermodynamic cycle. Study of the γ‐thialysine69 showed that lysine at position 69 influenced the basic limb of catalysis, consistent with the fact that the two lysine side chains are in proximity to each other in the active site. Based on these observations, a reaction sequence for PBP 6 is proposed, wherein protonated Lys235 serves as the electrostatic substrate anchor and Lys69 as the conduit for protons in the course of the acylation and deacylation half‐reactions. Proteins 2014; 82:1348–1358. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Expression microarrays are often constructed by the immobilization of PCR products on two-dimensional modified glass slides or on three-dimensional microporous substrates. In this study we investigate whether the length of the immobilized species and the substrate choice influence hybridization dynamics. Using a simple bimolecular mass action controlled model to describe hybridization, we observed that the extent of hybridization and the initial velocities were directly dependent on the length of the immobilized species. An inflection point was noted at a length of 712 bases, above which the influence of length on hybridization rate decreased. Interestingly, we observed no differences in these parameters whether hybridization occurred on a two- or three-dimensional surface. Furthermore, the affinity of the solution phase labeled species for the immobilized species was identical for all arrayed lengths on both surfaces. These data indicate a similar interaction of the noncovalently immobilized species with either surface. Finally, we have determined that competitive hybridization on expression microarrays is nonlinear with respect to time and concentration of competitor. This observation is critical for analysis of expression array data.  相似文献   

20.
Rechargeable aqueous Zn/MnO2 batteries are very attractive large‐scale energy storage technologies, but still suffer from limited cycle life and low capacity. Here the novel adoption of a near‐neutral acetate‐based electrolyte (pH ≈ 6) is presented to promote the two‐electron Mn4+/Mn2+ redox reaction and simultaneously enable a stable Zn anode. The acetate anion triggers a highly reversible MnO2/Mn2+ reaction, which ensures high capacity and avoids the issue of structural collapse of MnO2. Meanwhile, the anode‐friendly electrolyte enables a dendrite‐free Zn anode with outstanding stability and high plating/stripping Coulombic efficiency (99.8%). Hence, a high capacity of 556 mA h g?1, a lifetime of 4000 cycles without decay, and excellent rate capability up to 70 mA cm?2 are demonstated in this new near‐neutral aqueous Zn/MnO2 battery by simply manipulating the salt anion in the electrolyte. The acetate anion not only modifies the surface properties of MnO2 cathode but also creates a highly compatible environment for the Zn anode. This work provides a new opportunity for developing high‐performance Zn/MnO2 and other aqueous batteries based on the salt anion chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号