首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
现有微生物羟基化烟酸采用的是静息细胞转化工艺。但研究揭示,恶臭假单胞菌NA-1(Pseudomonas putidaNA-1)在培养过程中不降解发酵液中由诱导剂烟酸转化形成的6-羟基烟酸,这是由于烟酸的存在抑制了羟基烟酸降解酶的作用,而不是因为细胞停止生长不利用羟基烟酸的缘故。因而尝试利用菌体诱导培养过程进行烟酸转化生产,建立了一种新的生产工艺,即菌体培养转化和静息细胞转化联合工艺。该工艺在恶臭假单胞菌NA-1培养过程中持续补充烟酸以维持1%(W/V)浓度,使烟酸被生长细胞转化为羟基化烟酸并在发酵液中线性积累,而不被进一步降解;培养转化结束后,发酵液中的静息细胞依然拥有很高的羟基化酶活力,能够再次用于转化反应。该联合转化工艺与传统的静息细胞转化工艺相比,不仅节约了诱导剂烟酸,而且6-羟基烟酸的产量提高了65%。  相似文献   

2.
A nicotinate dehydrogenase (NaDH) gene cluster was cloned from Comamonas testosteroni JA1. The enzyme, termed NaDHJA1, is composed of 21, 82, and 46 kDa subunits, respectivley containing [2Fe2S], Mo(V) and cytochrome c domains. The recombinant NaDHJA1 can catalyze the hydroxylation of nicotinate and 3-cyanopyridine. NaDHJA1 protein exhibits 52.8% identity to the amino acid sequence of NaDHKT2440 from P. putida KT2440. Sequence alignment analysis showed that the [2Fe2S] domain in NaDHJA1 had a type II [2Fe-2S] motif and a type I [2Fe-2S] motif, while the same domain in NaDHKT2440 had only a type II [2Fe-2S] motif. NaDHKT2440 had an additional hypoxanthine dehydrogenase motif that NaDHJA1 does not have. When the small unit of NaDHJA1 was replaced by the small subunit from NaDHKT2440, the hybrid protein was able to catalyze the hydroxylation of nicotinate, but lost the ability to catalyze hydroxylation of 3-cyanopyridine. In contrast, after replacement of the small subunit of NaDHKT2440 with the small subunit from NaDHJA1, the resulting hybrid protein NaDHJAS+KTL acquired the ability to hydroxylate 3-cyanopyridine. The subunits swap results indicate the [2Fe2S] motif determines the 3-cyanopyridine hydroxylation ability, which is evidently different from the previous belief that the Mo motif determines substrate specificity.  相似文献   

3.
4.
Aims: Optimal production conditions of conjugated γ‐linolenic acid (CGLA) from γ‐linolenic acid using washed cells of Lactobacillus plantarum AKU 1009a as catalysts were investigated. Methods and Results: Washed cells of Lact. plantarum AKU 1009a exhibiting a high level of CGLA productivity were obtained by cultivation in a nutrient medium supplemented with 0·03% (w/v) α‐linolenic acid as an inducer. Under the optimal reaction conditions with 13 mg ml?1γ‐linolenic acid as a substrate in 5 ‐ml reaction volume, the washed cells [32% (wet cells, w/v) corresponding to 46 mg ml?1 dry cells] as the catalysts produced 8·8 mg CGLA per millilitre reaction mixture (68% molar yield) in 27 h. The produced CGLA was a mixture of two isomers, i.e., cis‐6,cis‐9,trans‐11‐octadecatrienoic acid (CGLA1, 40% of total CGLA) and cis‐6,trans‐9,trans‐11‐octadecatrienoic acid (CGLA2, 60% of total CGLA), and accounted for 66% of total fatty acid obtained. The CGLA produced was obtained as free fatty acids adsorbed mostly on the surface of the cells of Lact. plantarum AKU1009a. Conclusion: The practical process of CGLA production from γ‐linolenic acid using washed cells of Lact. plantarum AKU 1009a was successfully established. Significance and Impact of the Study: We presented the first example of microbial production of CGLA. CGLA produced by the process is valuable for evaluating their physiological and nutritional effects, and chemical characteristics.  相似文献   

5.
For most plant hormones, biological activity is suppressed by reversible conjugation to sugars, amino acids and other small molecules. In contrast, the conjugation of jasmonic acid (JA) to isoleucine (Ile) is known to enhance the activity of JA. Whereas hydroxylation and carboxylation of JA‐Ile permanently inactivates JA‐Ile‐mediated signaling in plants, the alternative deactivation pathway of JA‐Ile by its direct hydrolysis to JA remains unstudied. We show that Nicotiana attenuata jasmonoyl‐l ‐isoleucine hydrolase 1 (JIH1), a close homologue of previously characterized indoleacetic acid alanine resistant 3 (IAR3) gene in Arabidopsis, hydrolyzes both JA‐Ile and IAA‐Ala in vitro. When the herbivory‐inducible NaJIH1 gene was silenced by RNA interference, JA‐Ile levels increased dramatically after simulated herbivory in irJIH1, compared with wild‐type (WT) plants. When specialist (Manduca sexta) or generalist (Spodoptera littoralis) herbivores fed on irJIH1 plants they gained significantly less mass compared with those feeding on wild‐type (WT) plants. The poor larval performance was strongly correlated with the higher accumulation of several JA‐Ile‐dependent direct defense metabolites in irJIH1 plants. In the field, irJIH1 plants attracted substantially more Geocoris predators to the experimentally attached M. sexta eggs on their leaves, compared with empty vector plants, which correlated with higher herbivory‐elicited emissions of volatiles known to function as indirect defenses. We conclude that NaJIH1 encodes a new homeostatic step in JA metabolism that, together with JA and JA‐Ile‐hydroxylation and carboxylation of JA‐Ile, rapidly attenuates the JA‐Ile burst, allowing plants to tailor the expression of direct and indirect defenses against herbivore attack in nature.  相似文献   

6.
Production of 6-hydroxynicotinic acid, an important starting material for the synthesis of modern pesticides through bacterial position-specific hydroxylation of nicotinic acid, was investigated. Resting cells of Serratia marcescens IFO 12648 were found to catalyze the potential hydroxylation activity of nicotinic acid to produce 6-hydroxynicotinic acid. The optimum culture conditions of S. marcescens IFO 12648 for the accumulation of 6-hydroxynicotinic acid were investigated. The addition to the culture medium of molybdenum and iron ions and of nicotinic acid as an inducer greatly enhanced the hydroxylation activity. Under the optimum conditions, 98.5% of the added 2.2 M nicotinic acid was converted to 6-hydroxynicotinic acid, and the highest yield achieved was 301 g of 6-hydroxynicotinic acid per liter of reaction mixture containing 3.98 g dry weight of resting cells during a 72-h reaction at 35°C.  相似文献   

7.
Ursodeoxycholic acid (UDCA) is a bile acid of industrial interest as it is used as an agent for the treatment of primary sclerosing cholangitis and the medicamentous, non‐surgical dissolution of gallstones. Currently, it is prepared industrially from cholic acid following a seven‐step chemical procedure with an overall yield of <30%. In this study, we investigated the key enzymatic steps in the chemo‐enzymatic preparation of UDCA—the two‐step reduction of dehydrocholic acid (DHCA) to 12‐keto‐ursodeoxycholic acid using a mutant of 7β‐hydroxysteroid dehydrogenase (7β‐HSDH) from Collinsella aerofaciens and 3α‐hydroxysteroid dehydrogenase (3α‐HSDH) from Comamonas testosteroni. Three different one‐pot reaction approaches were investigated using whole‐cell biocatalysts in simple batch processes. We applied one‐biocatalyst systems, where 3α‐HSDH, 7β‐HSDH, and either a mutant of formate dehydrogenase (FDH) from Mycobacterium vaccae N10 or a glucose dehydrogenase (GDH) from Bacillus subtilis were expressed in a Escherichia coli BL21(DE3) based host strain. We also investigated two‐biocatalyst systems, where 3α‐HSDH and 7β‐HSDH were expressed separately together with FDH enzymes for cofactor regeneration in two distinct E. coli hosts that were simultaneously applied in the one‐pot reaction. The best result was achieved by the one‐biocatalyst system with GDH for cofactor regeneration, which was able to completely convert 100 mM DHCA to >99.5 mM 12‐keto‐UDCA within 4.5 h in a simple batch process on a liter scale. Biotechnol. Bioeng. 2013; 110: 68–77. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The purpose of this investigation was to examine the capacity of the biphenyl catabolic enzymes of Comamonas testosteroni B-356 to metabolize dihydroxybiphenyls symmetrically substituted on both rings. Data show that 3,3′-dihydroxybiphenyl is by far the preferred substrate for strain B-356. However, the dihydrodiol metabolite is very unstable and readily tautomerizes to a dead-end metabolite or is dehydroxylated by elimination of water. The tautomerization route is the most prominent. Thus, a very small fraction of the substrate is converted to other hydroxylated and acidic metabolites. Although 2,2′-dihydroxybiphenyl is a poor substrate for strain B-356 biphenyl dioxygenase, metabolites were produced by the biphenyl catabolic enzymes, leading to production of 2-hydroxybenzoic acid. Data show that the major route of metabolism involves, as a first step, a direct dehydroxylation of one of the ortho-substituted carbons to yield 2,3,2′-trihydroxybiphenyl. However, other metabolites resulting from hydroxylation of carbons 5 and 6 of 2,2′-dihydroxybiphenyl were also produced, leading to dead-end metabolites.  相似文献   

9.
Lyophilized cells of the open accessible bacterium Comamonas testosteroni DSM 1455 proved to be an excellent catalyst for the asymmetric reduction of different α-azido, α-bromo, and α-nitro ketones at elevated substrate concentrations (16 g/L) in a ‘substrate-coupled’ approach using 20% (v/v) of 2-propanol as hydrogen donor. Excellent anti-Prelog stereoselectivity was obtained, which is less common found in nature.  相似文献   

10.
This work reports the green organic chemistry synthesis of E‐2‐cyano‐3(furan‐2‐yl) acrylamide under microwave radiation (55 W), as well as the use of filamentous marine and terrestrial‐derived fungi, in the first ene‐reduction of 2‐cyano‐3‐(furan‐2‐yl) acrylamide to (R)‐2‐cyano‐3‐(furan‐2‐yl)propanamide. The fungal strains screened included Penicillium citrinum CBMAI 1186, Trichoderma sp. CBMAI 932 and Aspergillus sydowii CBMAI 935, and the filamentous terrestrial fungi Aspergillus sp. FPZSP 146 and Aspergillus sp. FPZSP 152. A compound with an uncommon CN‐bearing stereogenic center at the α‐C position was obtained by enantioselective reactions mediated in the presence of the microorganisms yielding the (R)‐2‐cyano‐3‐(furan‐2‐yl) propanamide 3a . Its isolated yield and e.e. ranged from 86% to 98% and 39% to 99%, respectively. The absolute configuration of the biotransformation products was determined by time‐dependent density functional theory (TD‐DFT) calculations of electronic circular dichroism (ECD) spectra. Finally, the tautomerization of 2‐cyano‐3‐(furan‐2‐yl) propanamide 3a to form an achiral ketenimine was observed and investigated in presence of protic solvents.  相似文献   

11.
Hydroxyamide‐based ligands have occupied a considerable place in asymmetric synthesis. Here we report the synthesis of seven β‐hydroxyamide‐based ligands from the reaction of 2‐hydroxynicotinic acid with chiral amino alcohols and test their effect on the enantioselective reduction of aromatic prochiral ketones with borane in tetrahydofuran (THF). They produce the corresponding secondary alcohols with up to 76% enantiomeric excess (ee) and good to excellent yields (86‐99%). Chirality 26:21–26, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
t‐Butyl 6‐cyano‐(3R,5R)‐dihydroxyhexanoate ((3R,5R)‐ 2 ) is a key chiral diol precursor of atorvastatin calcium (Lipitor®). We have constructed a Kluyveromyces lactis aldo‐keto reductase mutant KlAKR‐Y295W/W296L (KlAKRm) by rational design in previous research, which displayed high activity and excellent diastereoselectivity (dep > 99.5%) toward t‐butyl 6‐cyano‐(5R)‐hydroxy‐3‐oxohexanoate ((5R)‐ 1 ). To realize in situ cofactor regeneration, a robust KlAKRm and Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) co‐producer E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm was constructed in this work. Under the optimized conditions, AKR and GDH activities of E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm peaked at 249.9 U/g DCW (dry cellular weight) and 29100 U/g DCW, respectively. It completely converted (5R)‐ 1 at substrate loading size of up to 60.0 g/L (5R)‐ 1 in the absence of exogenous NADH, which was one‐fifth higher than that of the separately prepared KlAKRm and EsGDH under the same conditions. In this manner, a biocatalytic process for (3R,5R)‐ 2 with productivity of 243.2 kg/m3 d was developed. Compared with the combination of separate expressed KlAKRm with EsGDH, co‐expression of KlAKRm and EsGDH has the advantages of alleviating cell cultivation burden and elevating substrate load. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1235–1242, 2017  相似文献   

13.
14.
Transmembrane chemoreceptors are widely present in Bacteria and Archaea. They play a critical role in sensing various signals outside and transmitting to the cell interior. Here, we report the structure of the periplasmic ligand‐binding domain (LBD) of the transmembrane chemoreceptor MCP2201, which governs chemotaxis to citrate and other organic compounds in Comamonas testosteroni. The apo‐form LBD crystal revealed a typical four‐helix bundle homodimer, similar to previously well‐studied chemoreceptors such as Tar and Tsr of Escherichia coli. However, the citrate‐bound LBD revealed a four‐helix bundle homotrimer that had not been observed in bacterial chemoreceptor LBDs. This homotrimer was further confirmed with size‐exclusion chromatography, analytical ultracentrifugation and cross‐linking experiments. The physiological importance of the homotrimer for chemotaxis was demonstrated with site‐directed mutations of key amino acid residues in C. testosteroni mutants.  相似文献   

15.
The enantioselectivity of 4‐hydroxylation of bunitrolol (BTL), a β‐adrenoceptor blocking drug, was studied in microsomes from human liver, human hepatoma (Hep G2) cells expressing CYP2D6, and lymphoblastoid cells expressing CYP2D6. Kinetics in human liver microsomes showed that the Vmax value for (+)‐BTL was 2.1‐fold that of (−)‐BTL, and that the Km value for (+)‐BTL was lower than that for the (−)‐antipode, resulting in the intrinsic clearance (Vmax/Km) of (+)‐BTL being 2.1‐fold over its (−)‐antipode. CYP2D6 (CYP2D6‐met) expressed in Hep G2 cells had a methionine residue at position 373 of the amino acid sequence and a rat‐type N‐terminal peptide (MELLNGTGLWSM) instead of the human‐type (MGLEALVPLAVIV), and showed enantioselectivity of [(+)‐BTL < (−)‐BTL] for the rate of BTL 4‐hydroxylation. In contrast, enantioselectivity [(+)‐BTL > (−)‐BTL] for Hep G2‐CYP2D6 (CYP2D6‐val) with a human‐type N‐terminal peptide that had a valine residue at 374, which corresponds to the methionine of the CYP2D6‐met variant, was the same as that for human liver microsomes. We further confirmed that CYP2D6‐met and CYP2D6‐val expressed in human lymphoblastoid cells, both of which have methionine and valine, respectively, at position 374 and a human‐type N‐terminal peptide, exhibited the same enantioselectivities as those obtained from CYP2D6‐met and CYP2D6‐val expressed in the Hep G2 cell system. These results indicate that the amino acid at 374 of CYP2D6 is one of the key factors influencing the enantioselectivity of BTL 4‐hydroxylation. Chirality 11:1–9, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
Living microbial cells are considered to be the catalyst of choice for selective terpene functionalization. However, such processes often suffer from side product formation and poor substrate mass transfer into cells. For the hydroxylation of (S)‐limonene to (S)‐perillyl alcohol by Pseudomonas putida KT2440 (pGEc47ΔB)(pCom8‐PFR1500), containing the cytochrome P450 monooxygenase CYP153A6, the side products perillyl aldehyde and perillic acid constituted up to 26% of the total amount of oxidized terpenes. In this study, it is shown that the reaction rate is substrate‐limited in the two‐liquid phase system used and that host intrinsic dehydrogenases and not CYP153A6 are responsible for the formation of the undesired side products. In contrast to P. putida KT2440, E. coli W3110 was found to catalyze perillyl aldehyde reduction to the alcohol and no oxidation to the acid. Furthermore, E. coli W3110 harboring CYP153A6 showed high limonene hydroxylation activities (7.1 U g). The outer membrane protein AlkL was found to enhance hydroxylation activities of E. coli twofold in aqueous single‐phase and fivefold in two‐liquid phase biotransformations. In the latter system, E. coli harboring CYP153A6 and AlkL produced up to 39.2 mmol (S)‐perillyl alcohol L within 26 h, whereas no perillic acid and minor amounts of perillyl aldehyde (8% of the total products) were formed. In conclusion, undesired perillyl alcohol oxidation was reduced by choosing E. coli's enzymatic background as a reaction environment and co‐expression of the alkL gene in E. coli represents a promising strategy to enhance terpene bioconversion rates. Biotechnol. Bioeng. 2013; 110: 1282–1292. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Nine quinoline-degrading bacterial strains were tested for their ability to hydroxylate pyrimidine. All strains converted pyrimidine to uracil via pyrimidine-4-one in a cometabolic process. Quinoline 2-oxidoreductases (QuinORs) were the catalysts of fortuitous pyrimidine hydroxylation. Whereas in most strains the activity of the QuinOR towards pyrimidine was very low compared to its activity towards quinoline, QuinOR in crude extracts from Comamonas testosteroni 63 showed a specific activity of 64 (mU mg protein)-1 with pyrimidine as substrate, compared to a specific activity of 237 (mU mg protein)-1 towards the intrinsic substrate quinoline. Resting cells of Comamonas testosteroni 63 rapidly converted pyrimidine almost stoichiometrically to uracil, which accumulated in the cell suspension. Using an adsorbent resin, uracil was prepared from the supernatant of Comamonas testosteroni 63 resting cells with a yield of > 98%.  相似文献   

18.
The bioactive form of jasmonate is the conjugate of the amino acid isoleucine (Ile) with jasmonic acid (JA), which is biosynthesized in a reaction catalysed by the GH3 enzyme JASMONATE RESISTANT 1 (JAR1). We examined the biochemical properties of OsJAR1 and its involvement in photomorphogenesis of rice (Oryza sativa). OsJAR1 has a similar substrate specificities as its orthologue in Arabidopsis. However, osjar1 loss‐of‐function mutants did not show as severe coleoptile phenotypes as the JA‐deficient mutants coleoptile photomorphogenesis 2 (cpm2) and hebiba, which develop long coleoptiles in all light qualities we examined. Analysis of hormonal contents in the young seedling stage revealed that osjar1 mutants are still able to synthesize JA‐Ile conjugate in response to blue light, suggesting that a redundantly active enzyme can conjugate JA and Ile in rice seedlings. A good candidate for this enzyme is OsJAR2, which was found to be able to catalyse the conjugation of JA with Ile as well as with some additional amino acids. In contrast, if plants in the vegetative stage were mechanically wounded, the content of JA‐Ile was severely reduced in osjar1, demonstrating that OsJAR1 is the most important JA‐Ile conjugating enzyme in the wounding response during the vegetative stage.  相似文献   

19.
Comparison of the effectiveness of antioxidant activity of three thiol compounds, D ‐penicillamine, reduced L ‐glutathione, and 1,4‐dithioerythritol, expressed as a radical‐scavenging capacity based on the two independent methods, namely a decolorization 2,2′‐azinobis[3‐ethylbenzothiazoline‐6‐sulfonic acid] assay and a rotational viscometry, is reported. Particular concern was focused on the testing of potential free‐radical scavenging effects of thiols against hyaluronan degradation, induced by hydroxyl radicals. A promising, solvent‐independent, antioxidative function of 1,4‐dithioerythritol, comparable to that of a standard compound, Trolox®, was confirmed by the 2,2′‐azinobis[3‐ethylbenzothiazoline‐6‐sulfonic acid] assay. The new potential antioxidant 1,4‐dithioerythritol exhibited very good solubility in a variety of solvents (e.g., H2O, EtOH, and DMSO) and could be widely accepted and used as an effective antioxidant standard instead of a routinely used Trolox® on 2,2′‐azinobis[3‐ethylbenzothiazoline‐6‐sulfonic acid] assay.  相似文献   

20.
Two analogs of the ten‐amino acid residue, membrane‐active lipopeptaibiotic trichogin GA IV, mono‐labeled with 4‐cyano‐α‐methyl‐L ‐phenylalanine, a potentially useful fluorescence and IR absorption probe of the local microenvironment, were synthesized by the solid‐phase methodology and conformationally characterized. The single modification was incorporated either at the N‐terminus (position 1) or near the C‐terminus (position 8) of the peptide main chain. In both cases, the replaced amino acid was the equally helicogenic α‐aminoisobutyric acid (Aib) residue. We performed a solution conformational analysis by use of FT‐IR absorption, CD, and 2D‐NMR spectroscopies. The results indicate that both labeled analogs essentially maintain the overall helical propensity of the naturally occurring lipopeptaibiotic. Peptide? membrane interactions were assessed by fluorescence and ATR‐IR absorption techniques. Analogies and differences between the two peptides were highlighted. Taken together, our data confirm literature results that some of the spectroscopic parameters of the 4‐cyanobenzyl chromophore are sensitive markers of the local microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号