首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression and function of asialo-GM1 (AsGM1) in alloreactive cytotoxic T lymphocytes (CTL) was studied. We have shown previously that the cytotoxic reactions mediated by AsGM1+-cloned CTL were blocked by anti-AsGM1 or by purified AsGM1. To further determine the role of AsGM1 in CTL-mediated cytotoxicity, we examined the correlation between this blocking effect and the expression of AsGM1 on effector and target cells. Now we found that the blocking by anti-AsGM1 was largely dependent on the expression of AsGM1 on the effector cells in a dose-dependent fashion. The expression of AsGM1 on target cells had only little effect on the blocking of cytotoxic reactions by anti-AsGM1 or AsGM1. A threefold difference was seen in the blocking of AsGM1+ and AsGM1- targets. The observation was in sharp contrast to the effectors as no blocking was ever seen with AsGM1- CTL. Similar to CTL effectors, we found that the expression of AsGM1 and L3T4 were mutually excluded on mitogen-activated T cells, despite the fact that they could coexpress in resting T cells. The expression of AsGM1 on CTL effectors was associated with the antigen-nonspecific natural killer (NK)-like or lymphokine-activated killer (LAK)-like activity exerted by the alloreactive CTL. All AsGM1+ CTL possessed LAK activity against antigen-unrelated tumor targets, and the AsGM1- CTL only displayed antigen-specific alloreactivity. The LAK activity was associated with the expression of AsGM1 on effectors, and was not related to the AsGM1 expression on target cells. These findings indicate that the AsGM1 expressed on alloreactive CTL may function as an accessory molecule for T-cell receptors in the antigen-specific alloreactive cytotoxicity mediated by AsGM1+ CTL. The expression of AsGM1 may also be related to the activation of an NK-like apparatus in these CTL. Therefore, AsGM1 not only may be involved in cytotoxic reactions mediated by AsGM1+ CTL, it may also modulate the specificity of the CTL cytotoxicity.  相似文献   

2.
In the present study we examined asialo GM1 (AsGM1) expression and its function in alloreactive cytotoxic T lymphocytes (CTL). We consistently found that the cytotoxic activity of bulk culture-derived allo-CTL was susceptible to the treatment of anti-AsGM1 (alpha AsGM1) plus complement. To further determine whether the expression of AsGM1 was maintained in CTL, we examined cloned T cells. The expression of AsGM1 in the T cell clones was assessed by their susceptibility to lysis by alpha AsGM1 plus complement and the reduction or abrogation of their cytotoxic activity by this treatment. It was found that, with one exception, all Lyt-2+, Thy-1+ CTL clones were AsGM1+ (seven out of eight), independent of their class specificity (class I or class II). In contrast, all Thy-1+, L3T4+ CTL (2) or helper T cell (4) clones AsGM1-. These findings suggested that there was a close association between the expression of AsGM1 and the expression of Lyt-2. The cytotoxic reaction of the anti-class I MHC CTL clones that expressed AsGM1 was blocked by alpha AsGM1 or alpha Lyt-2 antibody. The Lyt-2+, AsGM1+ anti-class II MHC CTL clone-mediated lysis was inhibited by alpha AsGM1. Addition of AsGM1 in micelle form (AsGM1-M) alone also blocked the cytotoxic reactions. Addition of other structurally similar but antigenically different glycolipids or other non-AsGM1-containing liposome preparations did not affect CTL-mediated cytotoxicity. Furthermore, adding both alpha AsGM1 and AsGM1-M together at proper doses inhibited the blocking effect (deblocking) of either alone, and other structurally similar glycolipids did not inhibit the blocking. The deblocking was specific, since AsGM1-M did not affect the blocking by alpha Lyt-2. These findings indicate that not only is AsGM1 expressed in a majority of Lyt-2+ CTL clones, but it may also be involved in the CTL- target interaction to mediate lytic reaction.  相似文献   

3.
The present study has characterized the short term and long term cultured murine-activated killer (AK) cells that are induced by antibody directed against the epsilon-chain of T3 complex. The conventional lymphokine AK (LAK) cells were generated by culturing normal B6 spleen cells with purified human rIL-2. The alpha T3-induced AK cells (T3AK) were induced by culturing normal B6 spleen cells with alpha T3 and were then maintained in culture medium supplemented with human rIL-2 and/or alpha T3. After initial activation with alpha T3, lymphocyte proliferation and generation of cytotoxic effectors (T3AK) were noted, and these events were related to the endogenous production of IL-2 and IL-4. Addition of alpha IL-2 and/or alpha IL-4 suppressed both the proliferative response and the cytotoxic response induced by alpha T3. In comparing the T3AK cells with the conventional LAK cells, there were many similarities as well as some distinct differences. Both cells displayed a similar cytotoxic spectrum against a variety of tumor targets. The T3AK cells usually gave much higher levels of cytotoxic activity against susceptible targets. However, the susceptibility of different tumor targets to conventional LAK cells and T3AK cells varied. The time course for the generation of lytic activity also differed between the conventional LAK and T3AK cells. One distinct difference was their ability to survive in vitro. The conventional LAK cells survived in culture for only 1 wk. The T3AK cells could survive for at least 4 to 5 wk with active growth. The serologic phenotype of the LAK precursors was asialo GM1 (AsGM1+) cells, but the T3AK precursors could be either AsGM1+ or AsGM1-, depending on the target cell. The LAK effectors were both Lyt-2+ and Lyt-2-, but the short-term T3AK effectors were exclusively Lyt-2+. The long term T3AK cells (cultured for more than 2 wk) were found to consist of Lyt-2+ and Lyt-2- cells, and these subsets of T3AK cells showed different target specificities. These findings demonstrate the heterogeneity of LAK and T3AK cells, and this heterogeneous property may contribute to their diversity in specificity against different tumor targets and thus may affect their effectiveness in the immunotherapy of cancer.  相似文献   

4.
The cytotoxic activity of alloreactive cytotoxic T lymphocytes (CTL) was maintained and augmented by transferring cells from a 5-day mixed lymphocyte culture MLC into a host culture (HC) containing indomethacin, freshly explanted normal spleen cells, and peritoneal cells which were syngeneic to the MLC cells. The MLC cells used in the transfer experiments were generated by culturing untreated H-2b splenic responders with irradiated H-2d stimulators, or were generated by culturing Lyt-2-depleted H-2b splenic responders with irradiated H-2d stimulators. The allo-CTL were found to be derived from the donor MLC (first culture) when unfractionated MLC cells were transferred into a host (second) culture and incubated for 5 days. In contrast, the allo-CTL were derived from host culture cells when Lyt-2-depleted MLC cells were transferred and the combined cultures incubated for 5 days. In the former case, the augmentation of MLC-derived cytotoxicity did not result from nonspecific expansion of all donor T cells; instead it was mediated by lymphokine(s), distinct from IL-2, produced by helper T cells generated in host culture, which appeared to selectively expand the antigen-specific CTL or to increase the cytotoxic activity of these CTL. The helper T cells were Thy-1+, L3T4+, and Lyt-2-. These findings indicate that antigen-nonspecific help was provided by helper cells or helper factors (lymphokines) generated in the host culture, which maintained and augmented the cytotoxic activity of the fully generated allo-CTL. This helper effect was also seen in the induction of primary allo-CTL responses which could be generated with fewer stimulating cells and with a stronger cytotoxic response at different R/S ratios tested. The generation of allo-CTL in second culture following transfer of Lyt-2-depleted MLC cells to host cultures appears to have involved antigen carryover from the MLC; however, antigen carryover alone was not sufficient. It appears that in the absence of Lyt-2+ suppressor T cells, antigen-specific help might be generated in donor cultures (Lyt-2-depleted MLC) which promoted or recruited the generation of antigen-specific CTL in host culture.  相似文献   

5.
We have examined the underlying mechanisms accounting for the enhanced in vitro TNP-specific cytotoxic T-lymphocyte (CTL) response following the parenteral injection of syngeneic hapten-modified lymphoid cells. Augmented CTL activity noted following parenteral injection (iv vs sc) of 2,4,6-trinitrophenol-modified syngeneic spleen cells (TNP-SC) is most apparent when limiting numbers of TNP-modified stimulator cells are used in the in vitro sensitization phase. Enhanced CTL responses seen following sc and iv priming is due to distinct mechanisms. Spleen and lymph node (LN) cells from sc primed mice were found to contain significant levels of radioresistant helper activity upon coculture with either viable normal spleen cells in bulk culture or with thymocytes as the source of precursor CTLs in a limiting dilution assay. The helper activity was found to be mediated by a Lyt 1+2- T cells. In addition, Lyt 2-depleted spleen and LN cells from sc primed BALB/c mice could restore the ability of tolerant spleen cells from 2,4,6-trinitrobenzenesulfonic acid (TNBS)-injected BALB/c mice to generate TNP-specific CTLs. Conversely, Lyt 2-depleted spleen and LN cells from iv primed mice provided no measurable helper activity either in bulk culture or in the limiting dilution assay and did not restore the ability of TNBS-tolerant BALB/c spleen cells to generate TNP-specific CTLs. CTL priming via the iv route was found to be completely antigen specific as iv injection of either 2,4-dinitrophenol (DNP)- or fluorescein isothiocyanatel (FITC)-modified cells caused no enhanced CTL activity. Priming via the sc route exhibited a unique specificity pattern as it was shown that sc injection of both TNP-SC and DNP-SC, but not FITC-SC, resulted in enhanced TNP-specific CTL responses. CTL T-helper (Th)-cell induction via the sc route was correlated with (1) the presence of H-2 I region determinants on the inducer cells as the sc injection of TNP-modified erythrocytes led to no enhanced CTL responses or CTL Th activity (while iv injection of TNP-erythrocytes did lead to enhanced CTL responses without detectable helper activity) and (2) the detection of both hapten-specific T-cell proliferation and Interleukin 2 (IL-2) production upon restimulation in culture. We conclude that the sc injection of TNP-SC leads preferentially to an increase of specific Lyt 1+ helper activity, while iv injection leads preferentially to an apparent expansion of Lyt 2+ prelytic effector CTLs.  相似文献   

6.
Regulation of human cytolytic lymphocyte responses by interleukin-12.   总被引:39,自引:0,他引:39  
IL-12 is a heterodimeric cytokine which has been shown to cause the proliferation of activated T and NK cells, to enhance the lytic activity of NK cells, and to induce IFN-gamma production by resting and activated T and NK cells. We previously reported that IL-12 could synergize with IL-2 to activate human LAK cells in the presence of hydrocortisone but that IL-12 alone was inactive. We herein show that in the absence of hydrocortisone, IL-12 by itself can activate human LAK cells. IL-12-induced LAK cell activity was mediated predominantly by CD56+ lymphocytes. Activation of LAK cells by IL-12 appeared to be independent of IL-2 since it was not inhibited by neutralizing anti-human IL-2. However, IL-12- and IL-2-induced LAK cell activation could be partially inhibited by anti-human TNF-alpha. Moreover, IL-12 produced in situ appeared to play a role in IL-2-induced LAK cell activation since rat monoclonal antibodies to human IL-12 could partially inhibit the generation of LAK cells in response to IL-2. In addition to its effects on LAK cell responses, IL-12 could facilitate specific allogeneic human CTL responses. However, IL-12-facilitated CTL responses were blocked by neutralizing anti-human IL-2 indicating a requirement for IL-2 produced in situ. The ability of IL-12 to facilitate both nonspecific LAK and specific CTL responses suggests that it may be useful as a therapeutic agent against some tumors and infectious diseases.  相似文献   

7.
Supernatants from human mixed leukocyte cultures or lectin-depleted supernatants from cultures of PHA-activated human peripheral blood leukocytes were depleted of IL 2 by passage over an anti-human rIL2 immunoadsorbent column. The column eluates were concentrated, dialyzed, and tested for their ability to synergize with human rIL 2 in facilitating human cytolytic T lymphocyte (CTL) responses to allogeneic, uv-irradiated HT144 melanoma cells in vitro. CTL were generated in the presence of 1 X 10(-4) M hydrocortisone sodium succinate in order to minimize the generation of nonspecific lymphokine-activated killer (LAK) cells. IL 2-depleted lymphokine-containing supernatant (LKS), alone or in the presence of less than or equal to U/ml rIL 2 did not stimulate significant CTL responses. Recombinant IL 2 at greater than 2 U/ml stimulated weak CTL responses in the absence of LKS. However, strong synergistic CTL responses were observed when both IL 2-depleted LKS and greater than 2 U/ml rIL 2 were added to the cultures. CTL generated in these cultures could be distinguished from nonspecific LAK cells on the basis of their i) specificity, ii) T3 phenotype, and iii) kinetics of generation. Nevertheless, rIL 2 and IL 2-depleted LKS were sometimes observed to synergize in facilitating the generation of nonspecific LAK cells as well as the generation of specific CTL. When the times at which rIL 2 and IL 2-depleted LKS were added to the cultures were varied, IL 2 was found to be required early in CTL responses, whereas the synergistic factor(s) in LKS seemed to act later. Recombinant human interferon-gamma was unable to replace LKS in synergizing with rIL 2 to elicit CTL responses. In summary, these experiments suggest that LKS contains a late-acting factor(s), antigenically distinct from IL 2, which synergizes with IL 2 in facilitating human CTL responses.  相似文献   

8.
It is possible to generate high levels of lymphokine-activated killer (LAK) activity in short-term culture from cells enriched for natural killer (NK) activity. To determine whether LAK activity can also be generated from non-NK cells, we have depleted peripheral blood lymphocytes (PBL) of NK cells prior to culture with IL-2. NK activity in PBL is correlated with the intensity of staining with the lysosomotropic vital dye quinacrine. Quinacrine dim PBL, which are devoid of lytic NK cells, are capable of developing LAK activity following culture with IL-2. We have also separated PBL using the NK-associated NKH-1 marker. Depleting NKH-1+ cells eliminates NK activity but the ability to develop LAK activity is retained. NKH-1-depleted cells generate less LAK activity than unseparated or NKH-1-positive cells and do not proliferate as well as unseparated cells to IL-2. When NK-depleted cells are subsequently examined for the expression of the NKH-1 antigen, this marker is absent from most cells at Day 3 of IL-1 culture, but is expressed on an increasing number of cells by Days 6-8. These results suggest that LAK derived from non-NK cells is functionally and phenotypically similar to LAK from PBL-containing NK cells, and may be the result of the activation of an NK precursor population.  相似文献   

9.
IL-7 has been shown to induce low levels of lymphokine-activated killer cell (LAK) activity in bulk PBMC populations. We report here that immunomagnetically purified CD56+ cells from peripheral blood generated high LAK activity in response to IL-7. The LAK activity induced by IL-7 was comparable to, or slightly lower than, the LAK activity induced by IL-2. When analyzing cells from the same donor, no detectable LAK-generating effect of IL-7 was registered in the PBMC population, in contrast to a substantial effect in the CD56+ population. IL-2 induced 8- to 15-fold higher proliferative activity in CD56+ cells, relative to IL-7. At suboptimal concentrations of IL-2, IL-7 had a synergistic effect on the proliferation. IL-2-neutralizing antibodies did not abrogate the IL-7-induced proliferation or LAK generation. Both IL-7 and IL-2 induced comparable levels of 75-kDa TNFR expression, whereas IL-2R alpha expression was higher in IL-7-stimulated CD56+ cells. Low levels of TNF were produced in response to IL-7 at day 5, as opposed to a 50-fold higher TNF production in response to IL-2. No IL-2 or IL-6 production was detected. Our data indicate that IL-7 has profound and direct effects on CD56+ cells.  相似文献   

10.
CD4+ and CD8+ T cells do not develop significant lymphokine-activated killer (LAK) activity when PBL are cultured with IL-2 or even when they are activated with a T cell stimulus such as OKT3 mAb. The possibility that a T cell regulatory mechanism prevents the development of LAK activity by CD4+ or CD8+ cells in OKT3 mAb and IL-2 cultures was tested by depleting CD8+ or CD4+ cells from PBL before stimulation with OKT3 and IL-2. Under these conditions, the remaining CD4+ and CD8+ cells were able to generate non-MHC-restricted lysis of NK-resistant tumor targets. Our data suggested that a regulatory signal was present in the culture to prevent the development of lytic function by T cells. T cells removed from the PBL cultures were, upon culture with IL-2, able to generate high LAK activity, suggesting that inhibition of the CD4+ or CD8+ T cell-mediated LAK activity was an active ongoing process, which blocked the lysis at the level of the activated cell and not the precursor cell. Mixing experiments demonstrated that the CD4+ or the CD8+ cells isolated from the PBL cultures were able to inhibit the development of lytic function in the CD4-depleted and CD8-depleted cultures. Transforming growth factor-beta (TGF-beta) has been shown to block LAK activity of NK cells in IL-2-stimulated cultures. When TGF-beta was added to CD4(+)- or CD8(+)-depleted cultures, it also inhibited LAK activity of T cells in a dose-dependent fashion, without interfering with T cell growth. Lytic activity returned to activated levels when TGF-beta was removed from the culture medium, thereby demonstrating the reversibility of TGF-beta inhibition.  相似文献   

11.
The role of asialo GM1+ (ASGM1+) cells and exogenous IL-2 in the age-related decline in allospecific CTL activity was evaluated. Primary CTL were generated in mixed leukocyte culture (MLC) [BALB/cANN (H-2d) anti C57BL/6N (H-2b)] and tested for allospecific lytic activity against the EL-4 (H-2b) cell culture line, and for non-MHC-restricted activity against WEHI-3 (H-2d) and YAC-1 (H-2a). Cultures included responder cell populations which had been treated with antibody to ASGM1 plus complement or complement alone, and irradiated stimulator cells, in the presence or absence of rIL-2 or crude IL-2-containing supernatants. The amount of rIL-2 used to accommodate the age-related decline in IL-2 production was determined empirically to be 500 U by assessing IL-2 production in MLCs containing responder cells from young versus old animals. rIL-2 appeared to restore the allospecific CTL activity generated by spleen cells of old mice to the level of that of young. However, treatment with anti-ASGM1 antibody revealed that this restoration was due to an effect of the IL-2 on ASGM1+ cells. The allospecific target cells, EL-4, were not sensitive to lymphokine-activated killer (LAK) cells induced by IL-2 alone under the conditions used. It is suggested that the apparent restoration was due to increased LAK-like (or MHC-nonrestricted) activity mediated by an ASGM1+ cell in the CTL precursor population.  相似文献   

12.
Guanine ribonucleosides, substituted at the C8 position with either a bromine or a thiol group, have recently been shown to regulate several immunologic responses. We have previously shown that 8-mercaptoguanosine (8MG) can replace the requirement for cytokines in the generation of MHC-restricted CTL. In this paper, we examined the ability of 8MG to induce MHC-nonrestricted killer cells. We found that 8MG did not induce significant lytic activity from normal resting lymphocytes. However, 8MG was able to synergize with minimal amounts of IL-2 in inducing lytic activity similar to lymphokine-activated killers (LAK) in that both NK-sensitive and NK-resistant tumor cells were killed. Both the precursors and effectors of 8MG-LAK activity were similar to NK cells and were CD4- CD8- asialo-GM1+ NK1.1+. Similar to IL-2-induced LAK, 8MG-LAK were B220+. 8MG appeared to "stage" these precursor lymphocytes to become more responsive to IL-2 because optimal induction of 8MG-LAK required preincubation with 8MG before the addition of IL-2. This "staging" appeared to be due to the release of a "second signal" since it was readily inhibited by cyclosporine A. Anti-IFN-alpha beta was as efficient as cyclosporine A in inhibiting 8MG-LAK generation, whereas anti-IFN-gamma and anti-IL-1 did not exhibit significant inhibition. These findings suggest that 8MG can be of possible utility as an IL-2-sparing agent in LAK generation from NK cells.  相似文献   

13.
The purpose of this study was to examine the role of IL-1 on the activation of CD8+/CD4- class I-restricted helper cell-independent cytolytic T cell (HITc) clones known to produce IL-2 and proliferate in vitro after Ag stimulation with a Friend retrovirus-induced leukemia (FBL). The functional role of IL-1 in Ag-specific proliferation and IL-2 secretion was assessed by stimulating the T cell clones with FBL either in the presence or absence of macrophages (M phi), rIL-1, or rIL-2. Resting cloned HITc cells, purified from residual accessory cells, failed to proliferate in response to FBL alone, but proliferated in response to FBL plus M phi, rIL-1 or rIL-2. Stimulation with FBL alone in the absence of M phi or IL-1 was sufficient for induction of IL-2R expression, and rendered cells responsive to IL-2, but M phi or IL-1 were also required to induce production of IL-2. The activity of IL-1 was further examined by measuring the binding of [125I]rIL-1 alpha, which demonstrated that resting cloned HITc cells expressed IL-1R that increased in number after activation with Ag. This expression of IL-1R and requirement for IL-1 by CD8+ HITc was surprising because previous studies examining T cell populations after mitogen stimulation have not detected IL-1R on the CD8+ population. Therefore, the role of IL-1 in the activation of CD8+ CTL that do not secrete IL-2 after activation was assessed. By contrast to HITc, CD8+ CTL required exogenous IL-2 to proliferate in vitro and did not express IL-1R. These data demonstrate that the subset of CD8+ T cells responsible for IL-2 production express IL-1R and that triggering this receptor with IL-1 after Ag stimulation results in the production of IL-2 and subsequent proliferation.  相似文献   

14.
Human rIL-4 was studied for its capacity to induce lymphokine-activated killer (LAK) cell activity. In contrast to IL-2, IL-4 was not able to induce LAK cell activity in cell cultures derived from peripheral blood. IL-4 added simultaneously with IL-2 to such cultures suppressed IL-2-induced LAK cell activity measured against Daudi and the melanoma cell line MEWO in a dose-dependent way. IL-4 also inhibited the induction of LAK cell activity in CD2+, CD3-, CD4-, CD8- cells, suggesting that IL-4 acts directly on LAK precursor cells. IL-4 added 24 h after the addition of IL-2 failed to inhibit the generation of LAK cell activity. Cytotoxic activity of various types of NK cell clones was not affected after incubation in IL-4 for 3 days, indicating that IL-4 does not affect the activity of already committed killer cells. No significant differences were observed in the percentages of Tac+, NKH-1+ and CD16+ cells after culturing PBL in IL-2, IL-4 or combinations of IL-2 and IL-4 for 3 days. IL-4 also inhibited the activation of non-specific cytotoxic activity in MLC, as measured against K-562 and MEWO cells. In contrast, the Ag-specific CTL activity against the stimulator cells was augmented by IL-4. Collectively, these data indicate that IL-4 prevents the activation of LAK cell precursors by IL-2, but does not inhibit the generation of Ag-specific CTL.  相似文献   

15.
C57BL/6 (B6) mice were i.v. presensitized with class I H-2-disparate B6-C-H-2bm1 (bm1) spleen cells. Such presensitization resulted in almost complete abrogation of bm1-specific Lyt-2+ T cell-mediated proliferative and IL-2-producing capacities as measured by MLC of lymphoid cells from presensitized B6 mice with stimulating bm1 cells. In contrast, comparable magnitude of CTL responses was generated in bulk cultures from presensitized B6 lymphoid cells to that obtained in unpresensitized B6 responding cultures. These differential influences of Lyt-2+ T cell functions were also demonstrated by limiting dilution assays; frequencies of proliferative and IL-2-producing T cell precursors were as low as undetectable in presensitized B6 lymphoid cells, whereas an appreciable frequency of CTL precursors in a portion of the same lymphoid cells was observed. When bm1 skin grafting was performed in B6 mice i.v. presensitized with bm1 cells, the strikingly prolonged survival of bm1 skin grafts was observed. It was also demonstrated that the bm1 skin graft-bearing B6 mice which had been presensitized with bm1 cells not only exhibited a continuing suppressive state of bm1-specific helper (proliferative and IL-2-producing) function but also failed to generate anti-bm1 CTL responses. These results indicate that 1) i.v. presensitization with class I H-2 alloantigens results in selective tolerance of Lyt-2+ Th cells which is adequate for inducing prolonged graft survival, 2) the induction of complete abrogation of CTL potential is not absolute requirement for the prolongation of graft survival, and 3) residual CTL potential is attenuated after grafting so far as Th cells are rendered tolerant.  相似文献   

16.
Induction of peripheral T cell anergy associated with stimulation through the TCR complex in vivo has been described in mice using chemically modified APC, staphylococcal enterotoxin B, and intact anti-CD3 mAb. In the latter two models, T cell proliferation, IL-2R expression, and lymphokine production have been demonstrated before subsequent induction of hyporesponsiveness, whereas in the former model, these events have not been observed. To further investigate the relationship between mitogenicity and induction of peripheral hyporesponsiveness, mice were treated with either mitogenic intact anti-CD3 mAb or nonmitogenic F(ab')2 fragments of anti-CD3 mAb. T cells from F(ab')2-treated mice demonstrated a selective decrease in helper functions, with minimal effect on CTL function. Specifically, a marked reduction in ability of Th cells to secrete IL-2 when challenged in vitro with mitogen or alloantigen was observed, which persisted for at least 2 mo after mAb administration and which was independent of T cell depletion. Proliferative function was decreased in CD4+ T cells and could not be fully restored with addition of exogenous IL-2. A helper defect was also evident in vivo, in that F(ab')2-treated mice were deficient in their ability to reject MHC-disparate skin grafts, and in vivo administration of IL-2 reconstituted their ability to reject skin grafts normally. In contrast, T cells from mice treated with intact mAb demonstrated a significant decrease in both CTL and helper functions. A long term reduction in TCR expression on CD4+ cells from F(ab')2-treated mice, and on both CD4+ and CD8+ cells from intact mAb-treated mice was observed. These findings demonstrate that peripheral T cell hyporesponsiveness can be induced in vivo by binding an identical epitope on the TCR complex in the presence or absence of initial proliferation, lymphokine secretion, or IL-2R expression, and that binding to the same epitope can result in varying long term effects on T cell function.  相似文献   

17.
I have compared the requirements for T helper (Th) cell function during the generation of virus-specific and alloreactive cytotoxic thymus (T)-derived lymphocyte (CTL) responses. Restimulation of vesicular stomatitis virus (VSV)-immune T cells (VSV memory CTLs) with VSV-infected stimulators resulted in the generation of class I-restricted, VSV-specific CTLs. Progression of VSV memory CTLs (Lyt-1-2+) into VSV-specific CTLs required inductive signals derived from VSV-induced, Lyt-1+2- Th cells because: (i) cultures depleted by negative selection of Lyt-1+ T cells failed to generate CTLs; (ii) titration of VSV memory CTLs into a limiting dilution (LD) microculture system depleted of Th cells generated curves which were not consistent with a single limiting cell type; (iii) LD analysis of VSV memory CTLs did produce single-hit curves in the presence of Lyt-1+2- T cells sensitized against VSV; and (iv) monoclonal anti-L3T4 antibody completely abrogated CTL generation against VSV. Similar results were also obtained with Sendai virus (SV), a member of the paramyxovirus family. The notion that a class II-restricted, L3T4+ Th cell plays an obligatory role in the generation of CTLs against these viruses is also supported by the observation that purified T cell lymphoblasts (class II antigen negative) failed to function as antigen-presenting cells for CTL responses against VSV and SV. T cell lymphoblasts were efficiently lysed by class I-restricted, anti-VSV and -SV CTLs, indicating that activated T cells expressed the appropriate viral peptides for CTL recognition. Furthermore, heterogeneity in the VSV-induced Th cell population was detected by LD analysis, suggesting that at least two types of Th cells were required for the generation of an anti-VSV CTL response. VSV-induced Th cell function could not simply be replaced by exogenous IL-2 because this lymphokine induced cytotoxic cells that had the characteristics of lymphokine-activated killer (LAK) cells and not anti-viral CTLs. In contrast, CTL responses against allogeneic determinants could not be completely blocked with antibodies against L3T4 and depletion of L3T4+ cells did not prevent the generation of alloreactive CTLs in cultures stimulated with allogeneic spleen cells or activated T cell lymphoblasts. Thus, these studies demonstrate an obligatory requirement for an L3T4-dependent Th cell pathway for CTL responses against viruses such as VSV and SV; whereas, CTL responses against allogeneic determinants can utilize an L3T4-independent pathway.  相似文献   

18.
Virus-immune spleen cells induce fatal immunopathology following adoptive transfer into adult C57B1/6J mice that have been infected with lymphocytic choriomeningitis virus (LCMV) and immunosuppressed with cyclophosphamide. This is accompanied by the development of potent cytotoxic T-lymphocyte (CTL) activity of donor origin in the recipient spleen. Both the capacity to trigger the acute meningitis observed at 72 hr and to generate CTL effectors in lymphoid tissue are completely abrogated by the removal of Lyt-2+ cells from the donor population. However a lower level of inflammatory process in the central nervous system may emerge, in the absence of significant CTL function in recipient spleen, by 5 days after transfer of the Lyt-2-depleted cell population. Treatment of the transferred cells with antibody to the L3T4 marker does not reduce either the severity of inflammation or the level of CTL effector function in the recipient. Thus Lyt-2+ cells are required for the acute, fatal immunopathology characteristic of LCM, but it is not clear that in a more chronic situation, they are the sole effectors capable of triggering inflammatory process in this disease.  相似文献   

19.
We investigate the production and biological activity of soluble helper factors produced by peritoneal T cells and macrophage derived from mice primed in vivo with Listeria monocytogenes. Supernatant fluids from co-cultures of these immune T cells and activated macrophages contained Interleukin 1 (IL 1) and Interleukin 2 (IL 2), and had the ability to assist the generation of cytotoxic T lymphocytes (CTL) from a population of nylon wool nonadherent spleen cells sensitized to allogeneic heat-treated thymocytes. The ability to assist CTL development involved T cell and macrophage factors in addition to IL 1 and IL 2. Immune T cells cultured alone produced a factor, devoid of significant IL 2 activity, that assisted CTL development only if adherent cells were present in the responding population. Activated macrophage produced a 38,000 dalton component, distinct from IL 1 on the basis of m.w., that assisted the development of CTL from nylon wool nonadherent splenic cells. Supernatants fluids from co-cultures of immune T cells and allogeneic, nonactivated macrophage contained a CTL helper factor but did not contain IL 1 or IL 2 activities. In contrast, supernatant fluids from co-cultures of immune T cells and syngeneic, nonactivated macrophage contained all 3 activities. This suggests a genetic restriction for the production of IL 1 and IL 2 that does not restrict the production of a CTL helper factor. These results demonstrate that T cell- and macrophage-derived helper factors distinct from IL 1 and IL 2 participate in the development of CTL.  相似文献   

20.
This study establishes assay systems for helper T cell activities assisting cytotoxic T lymphocyte (CTL) and antibody responses to tumor-associated antigens (TAA) and demonstrates the existence of TAA that induce preferentially anti-TAA CTL helper and B cell helper T cell activities in two syngeneic tumor models. C3H/HeN mice were immunized to the syngeneic X5563 plasmacytoma or MH134 hepatoma. Spleen cells from these mice were tested for anti-TAA helper T cell activity capable of augmenting anti-trinitrophenyl(TNP) CTL and anti-TNP antibody responses from anti-TNP CTL and B cell precursors (responding cells) by stimulation with TNP-modified X5563 or MH134 tumor cells. The results demonstrate that cultures of responding cells plus 85OR X-irradiated tumor-immunized spleen cells (helper cells) failed to enhance anti-TNP CTL or antibody responses when in vitro stimulation was provided by either unmodified tumor cells or TNP-modified syngeneic spleen cells (TNP-self). In contrast, these cultures resulted in appreciable augmentation of anti-TNP CTL or antibody response when stimulated by TNP-modified tumor cells. Such anti-TAA helper activities were revealed to be Lyt-1+2- T cell mediated and TAA specific. Most interestingly, immunization with X5563 tumor cells resulted in anti-TAA helper T cell activity involved in CTL, but not in antibody responses. Conversely, TAA of MH134 tumor cells induced selective generation of anti-TAA helper T cell activity responsible for antibody response. These results indicate that there exists the qualitative TAA-heterogeneity as evidenced by the preferential induction of anti-TAA CTL- and B cell-helper T cell activities. The results are discussed in the light of cellular mechanisms underlying the preferential anti-TAA immune responses, and the interrelationship between various types of cell functions including CTL- and B cell-help.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号