首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Livestock movements in Great Britain are well recorded, have been extensively analysed with respect to their role in disease spread, and have been used in real time to advise governments on the control of infectious diseases. Typically, livestock holdings are treated as distinct entities that must observe movement standstills upon receipt of livestock, and must report livestock movements. However, there are currently two dispensations that can exempt holdings from either observing standstills or reporting movements, namely the Sole Occupancy Authority (SOA) and Cattle Tracing System (CTS) Links, respectively. In this report we have used a combination of data analyses and computational modelling to investigate the usage and potential impact of such linked holdings on the size of a Foot-and-Mouth Disease (FMD) epidemic. Our analyses show that although SOAs are abundant, their dynamics appear relatively stagnant. The number of CTS Links is also abundant, and increasing rapidly. Although most linked holdings are only involved in a single CTS Link, some holdings are involved in numerous links that can be amalgamated to form "CTS Chains" which can be both large and geographically dispersed. Our model predicts that under a worst case scenario of "one infected - all infected", SOAs do pose a risk of increasing the size (in terms of number of infected holdings) of a FMD epidemic, but this increase is mainly due to intra-SOA infection spread events. Furthermore, although SOAs do increase the geographic spread of an epidemic, this increase is predominantly local. Whereas, CTS Chains pose a risk of increasing both the size and the geographical spread of the disease substantially, under a worse case scenario. Our results highlight the need for further investigations into whether CTS Chains are transmission chains, and also investigations into intra-SOA movements and livestock distributions due to the lack of current data.  相似文献   

2.
Livestock movements in Great Britain (GB) are well recorded and are a unique record of the network of connections among livestock-holding locations. These connections can be critical for disease spread, as in the 2001 epidemic of foot-and-mouth disease (FMD) in the UK. Here, the movement data are used to construct an individual-farm-based model of the initial spread of FMD in GB and determine the susceptibility of the GB livestock industry to future outbreaks under the current legislative requirements. Transmission through movements is modelled, with additional local spread unrelated to the known movements. Simulations show that movements can result in a large nationwide epidemic, but only if cattle are heavily involved, or the epidemic occurs in late summer or early autumn. Inclusion of random local spread can considerably increase epidemic size, but has only a small impact on the spatial extent of the disease. There is a geographical bias in the epidemic size reached, with larger epidemics originating in Scotland and the north of England than elsewhere.  相似文献   

3.
The 2001 epidemic of foot-and-mouth disease (FMD) in the UK resulted in the death of nearly 10 million livestock at a cost that was estimated to be up to 8 billion pounds. Owing to the controversy surrounding the epidemic, the question of whether or not alternative policies would have resulted in significantly better control of the epidemic remains of great interest. A hexagonal lattice simulation of FMD in Cumbria is used to address the central question of whether or not better use could have been made of expert knowledge of FMD transmission to target pre-emptive culling, by assuming that the premises at greatest risk of becoming infected can be targeted for culling. The 2000 UK census and the epidemiological database collected during the epidemic are used to describe key characteristics of disease transmission, and the model is fit to the epidemic time-series. Under the assumptions of the model, the parameters that best fit the epidemic in Cumbria indicate that a policy based on expert knowledge would have exacerbated the epidemic compared with the policy as implemented. However, targeting more distant, high-risk farms could be more valuable under different epidemic conditions, notably, if risk factors of sufficient magnitude could be identified to aid in prioritizing vaccination or culling of farms at high risk of becoming infected.  相似文献   

4.
Foot-and-mouth disease (FMD) is an extremely infectious viral infection of cloven-hoofed animals which is highly challenging to control and can give rise to national animal health crises, especially if there is a lack of pre-existing immunity due to the emergence of new strains or following incursions into disease-free regions. The 2001 FMD epidemic in the UK was on a scale that initially overwhelmed the national veterinary services and was eventually controlled by livestock lockdown and slaughter on an unprecedented scale. In 2020, the rapid emergence of COVID-19 has led to a human pandemic unparalleled in living memory. The enormous logistics of multi-agency control efforts for COVID-19 are reminiscent of the 2001 FMD epidemic in the UK, as are the use of movement restrictions, not normally a feature of human disease control. The UK experience is internationally relevant as few countries have experienced national epidemic crises for both diseases. In this review, we reflect on the experiences and lessons learnt from UK and international responses to FMD and COVID-19 with respect to their management, including the challenge of preclinical viral transmission, threat awareness, early detection, different interpretations of scientific information, lockdown, biosecurity behaviour change, shortage of testing capacity and the choices for eradication versus living with infection. A major lesson is that the similarity of issues and critical resources needed to manage large-scale outbreaks demonstrates that there is benefit to a ‘One Health’ approach to preparedness, with potential for greater cooperation in planning and the consideration of shared critical resources.  相似文献   

5.
‘Big-data’ epidemic models are being increasingly used to influence government policy to help with control and eradication of infectious diseases. In the case of livestock, detailed movement records have been used to parametrize realistic transmission models. While livestock movement data are readily available in the UK and other countries in the EU, in many countries around the world, such detailed data are not available. By using a comprehensive database of the UK cattle trade network, we implement various sampling strategies to determine the quantity of network data required to give accurate epidemiological predictions. It is found that by targeting nodes with the highest number of movements, accurate predictions on the size and spatial spread of epidemics can be made. This work has implications for countries such as the USA, where access to data is limited, and developing countries that may lack the resources to collect a full dataset on livestock movements.  相似文献   

6.

Background

We consider the potential for infection to spread in a farm population from the primary outbreak farm via livestock movements prior to disease detection. We analyse how this depends on the time of the year infection occurs, the species transmitting, the length of infectious period on the primary outbreak farm, location of the primary outbreak, and whether a livestock market becomes involved. We consider short infectious periods of 1 week, 2 weeks and 4 weeks, characteristic of acute contagious livestock diseases. The analysis is based on farms in Scotland from 1 January 2003 to 31 July 2007.

Results

The proportion of primary outbreaks from which an acute contagious disease would spread via movement of livestock is generally low, but exhibits distinct annual cyclicity with peaks in May and August. The distance that livestock are moved varies similarly: at the time of the year when the potential for spread via movements is highest, the geographical spread via movements is largest. The seasonal patterns for cattle differ from those for sheep whilst there is no obvious seasonality for pigs. When spread via movements does occur, there is a high risk of infection reaching a livestock market; infection of markets can amplify disease spread. The proportion of primary outbreaks that would spread infection via livestock movements varies significantly between geographical regions.

Conclusions

In this paper we introduce a set-up for analysis of movement data that allows for a generalized assessment of the risk associated with infection spreading from a primary outbreak farm via livestock movements, applying this to Scotland, we assess how this risk depends upon the time of the year, species transmitting, location of the farm and other factors.  相似文献   

7.
Rift Valley fever (RVF) is a vector-borne viral disease of major animal and public health importance. In 2018–19, it caused an epidemic in both livestock and human populations of the island of Mayotte. Using Bayesian modelling approaches, we assessed the spatio-temporal pattern of RVF virus (RVFV) infection in livestock and human populations across the island, and factors shaping it. First, we assessed if (i) livestock movements, (ii) spatial proximity from communes with infected animals, and (iii) livestock density were associated with the temporal sequence of RVFV introduction into Mayotte communes’ livestock populations. Second, we assessed whether the rate of human infection was associated with (a) spatial proximity from and (b) livestock density of communes with infected animals. Our analyses showed that the temporal sequence of RVFV introduction into communes’ livestock populations was associated with livestock movements and spatial proximity from communes with infected animals, with livestock movements being associated with the best model fit. Moreover, the pattern of human cases was associated with their spatial proximity from communes with infected animals, with the risk of human infection sharply increasing if livestock in the same or close communes were infected. This study highlights the importance of understanding livestock movement networks in informing the design of risk-based RVF surveillance programs.  相似文献   

8.
The 2001 grass pollen season in the United Kingdom was notably severe. An epidemic of foot and mouth disease (FMD) occurred in the UK during February and spread through the country during the summer. The media claimed that the control measures of culling infected animals and the restricted movement of stock, led to reduced grazing allowing pastures to flower more than in previous years. This study aimed to examine whether the severity was due only to weather factors or if the control measures also contributed. Three pollen sites from the FMD-affected Midlands region were investigated and compared with two sites from regions unaffected for differences in pollen catches, culling levels and weather. The June pollen catch in the Midlands was particularly high but this pattern also features in areas such as Cambridge in the East that were minimally affected by the epidemic. In most of the catchment areas affected by FMD the quantity of animals culled was less than 10% of the total livestock. In areas where culling was concentrated we can assume that there would have been some localized affect on the pollen levels. The results show that the main influencing variable on the 2001 grass pollen counts in the Midlands was the weather and that culling due to the foot and mouth epidemic did not exert an important influence at the regional level.  相似文献   

9.
The 2001 grass pollen season in the United Kingdom was notably severe. An epidemic of foot and mouth disease (FMD) occurred in the UK during February and spread through the country during the summer. The media claimed that the control measures of culling infected animals and the restricted movement of stock, led to reduced grazing allowing pastures to flower more than in previous years. This study aimed to examine whether the severity was due only to weather factors or if the control measures also contributed. Three pollen sites from the FMD-affected Midlands region were investigated and compared with two sites from regions unaffected for differences in pollen catches, culling levels and weather. The June pollen catch in the Midlands was particularly high but this pattern also features in areas such as Cambridge in the East that were minimally affected by the epidemic. In most of the catchment areas affected by FMD the quantity of animals culled was less than 10% of the total livestock. In areas where culling was concentrated we can assume that there would have been some localized affect on the pollen levels. The results show that the main influencing variable on the 2001 grass pollen counts in the Midlands was the weather and that culling due to the foot and mouth epidemic did not exert an important influence at the regional level.  相似文献   

10.
The 2001 grass pollen season in the United Kingdom was notably severe. An epidemic of foot and mouth disease (FMD) occurred in the UK during February and spread through the country during the summer. The media claimed that the control measures of culling infected animals and the restricted movement of stock, led to reduced grazing allowing pastures to flower more than in previous years. This study aimed to examine whether the severity was due only to weather factors or if the control measures also contributed. Three pollen sites from the FMD-affected Midlands region were investigated and compared with two sites from regions unaffected for differences in pollen catches, culling levels and weather. The June pollen catch in the Midlands was particularly high but this pattern also features in areas such as Cambridge in the East that were minimally affected by the epidemic. In most of the catchment areas affected by FMD the quantity of animals culled was less than 10% of the total livestock. In areas where culling was concentrated we can assume that there would have been some localized affect on the pollen levels. The results show that the main influencing variable on the 2001 grass pollen counts in the Midlands was the weather and that culling due to the foot and mouth epidemic did not exert an important influence at the regional level.  相似文献   

11.
The 2001 UK foot and mouth disease (FMD) epidemic marked a change in global FMD management, focusing less on trade isolation than on biosecurity within countries where FMD is endemic. Post 2001 policy calls for the isolation of disease-free zones in FMD-endemic countries, while increasing the opportunities for trade. The impact of the change on disease risk has yet to be tested. In this paper, we estimate an empirical model of disease risk that tests for the impact of trade volumes before and after 2001, controlling for biosecurity measures. In the pre 2001 regime, we find that poor biosecurity was associated with the probability of reporting an outbreak. In the post 2001 regime, the risks changed, with trade being a much greater source of risk. We discuss the trade-off between trade restrictions and biosecurity measures in the management of FMD disease risks.  相似文献   

12.
The efficacy of contact tracing, be it between individuals (e.g. sexually transmitted diseases or severe acute respiratory syndrome) or between groups of individuals (e.g. foot-and-mouth disease; FMD), is difficult to evaluate without precise knowledge of the underlying contact structure; i.e. who is connected to whom? Motivated by the 2001 FMD epidemic in the UK, we determine, using stochastic simulations and deterministic 'moment closure' models of disease transmission on networks of premises (nodes), network and disease properties that are important for contact tracing efficiency. For random networks with a high average number of connections per node, little clustering of connections and short latency periods, contact tracing is typically ineffective. In this case, isolation of infected nodes is the dominant factor in determining disease epidemic size and duration. If the latency period is longer and the average number of connections per node small, or if the network is spatially clustered, then the contact tracing performs better and an overall reduction in the proportion of nodes that are removed during an epidemic is observed.  相似文献   

13.
Both badgers and livestock movements have been implicated in contributing to the ongoing epidemic of bovine tuberculosis (BTB) in British cattle. However, the relative contributions of these and other causes are not well quantified. We used cattle movement data to construct an individual (premises)-based model of BTB spread within Great Britain, accounting for spread due to recorded cattle movements and other causes. Outbreak data for 2004 were best explained by a model attributing 16% of herd infections directly to cattle movements, and a further 9% unexplained, potentially including spread from unrecorded movements. The best-fit model assumed low levels of cattle-to-cattle transmission. The remaining 75% of infection was attributed to local effects within specific high-risk areas. Annual and biennial testing is mandatory for herds deemed at high risk of infection, as is pre-movement testing from such herds. The herds identified as high risk in 2004 by our model are in broad agreement with those officially designated as such at that time. However, border areas at the edges of high-risk regions are different, suggesting possible areas that should be targeted to prevent further geographical spread of disease. With these areas expanding rapidly over the last decade, their close surveillance is important to both identify infected herds qucikly, and limit their further growth.  相似文献   

14.
Movement of live animals is a key contributor to disease spread. Farmed Atlantic salmon Salmo salar, rainbow trout Onchorynchus mykiss and brown/sea trout Salmo trutta are initially raised in freshwater (FW) farms; all the salmon and some of the trout are subsequently moved to seawater (SW) farms. Frequently, fish are moved between farms during their FW stage and sometimes during their SW stage. Seasonality and differences in contact patterns across production phases have been shown to influence the course of an epidemic in livestock; however, these parameters have not been included in previous network models studying disease transmission in salmonids. In Scotland, farmers are required to register fish movements onto and off their farms; these records were used in the present study to investigate seasonality and heterogeneity of movements for each production phase separately for farmed salmon, rainbow trout and brown/sea trout. Salmon FW-FW and FW-SW movements showed a higher degree of heterogeneity in number of contacts and different seasonal patterns compared with SW-SW movements. FW-FW movements peaked from May to July and FW-SW movements peaked from March to April and from October to November. Salmon SW-SW movements occurred more consistently over the year and showed fewer connections and number of repeated connections between farms. Therefore, the salmon SW-SW network might be treated as homogeneous regarding the number of connections between farms and without seasonality. However, seasonality and production phase should be included in simulation models concerning FW-FW and FW-SW movements specifically. The number of rainbow trout FW-FW and brown/sea trout FW-FW movements were different from random. However, movements from other production phases were too low to discern a seasonal pattern or differences in contact pattern.  相似文献   

15.
口蹄疫(FMD)是一种严重威胁畜牧业发展的重要传染病,目前世界上许多国家和地区都有该病的流行与发生.其控制措施主要是疫苗免疫,虽然传统疫苗在该病的防控中起了重要的作用,但也存在着诸多的缺点.因此研制新型的FMD疫苗是今后的发展方向.本文结合实验室在FMD新型疫苗研究方面所开展的探索性研究工作,综述了国内外在FMD基因工程弱毒苗或灭活苗、蛋白质和合成肽疫苗、空衣壳疫苗、细胞因子增强型疫苗等研究领域所取得的进展.  相似文献   

16.
Improvements to sequencing protocols and the development of computational phylogenetics have opened up opportunities to study the rapid evolution of RNA viruses in real time. In practical terms, these results can be combined with field data in order to reconstruct spatiotemporal scenarios that describe the origin and transmission pathways of viruses during an epidemic. In the case of notifiable diseases, such as foot-and-mouth disease (FMD), these analyses provide important insights into the epidemiology of field outbreaks that can support disease control programmes. This study reconstructs the origin and transmission history of the FMD outbreaks which occurred during 2011 in Burgas Province, Bulgaria, a country that had been previously FMD-free-without-vaccination since 1996. Nineteen full genome sequences (FGS) of FMD virus (FMDV) were generated and analysed, including eight representative viruses from all of the virus-positive outbreaks of the disease in the country and 11 closely-related contemporary viruses from countries in the region where FMD is endemic (Turkey and Israel). All Bulgarian sequences shared a single putative common ancestor which was closely related to the index case identified in wild boar. The closest relative from outside of Bulgaria was a FMDV collected during 2010 in Bursa (Anatolia, Turkey). Within Bulgaria, two discrete genetic clusters were detected that corresponded to two episodes of outbreaks that occurred during January and March-April 2011. The number of nucleotide substitutions that were present between, and within, these separate clusters provided evidence that undetected FMDV infection had occurred. These conclusions are supported by laboratory data that subsequently identified three additional FMDV-infected livestock premises by serosurveillance, as well as a number of antibody positive wild boar on both sides of the border with Turkish Thrace. This study highlights how FGS analysis can be used as an effective on-the-spot tool to support and help direct epidemiological investigations of field outbreaks.  相似文献   

17.
The results of a serological survey of livestock in Kazakhstan, carried out in 1997–1998, are reported. Serum samples from 958 animals (cattle, sheep and goats) were tested for antibodies to foot and mouth disease (FMD), bluetongue (BT), epizootic haemorrhagic disease (EHD), rinderpest (RP) and peste des petits ruminants (PPR) viruses, and to Brucella spp. We also investigated the vaccination status of livestock and related this to changes in veterinary provision since independence in 1991. For the 2 diseases under official surveillance (FMD and brucellosis) our results were similar to official data, although we found significantly higher brucellosis levels in 2 districts and widespread ignorance about FMD vaccination status. The seroprevalence for BT virus was 23%, and seropositive animals were widespread suggesting endemicity, despite the disease not having being previously reported. We found a few seropositives for EHDV and PPRV, which may suggest that these diseases are also present in Kazakhstan. An hierarchical model showed that seroprevalence to FMD and BT viruses were clustered at the farm/village level, rather than at a larger spatial scale. This was unexpected for FMD, which is subject to vaccination policies which vary at the raion (county) level.  相似文献   

18.
Strategies to control transboundary diseases have in the past generated unintended negative consequences for both the environment and local human populations. Integrating perspectives from across disciplines, including livestock, veterinary and conservation sectors, is necessary for identifying disease control strategies that optimise environmental goods and services at the wildlife-livestock interface. Prompted by the recent development of a global strategy for the control and elimination of foot-and-mouth disease (FMD), this paper seeks insight into the consequences of, and rational options for potential FMD control measures in relation to environmental, conservation and human poverty considerations in Africa. We suggest a more environmentally nuanced process of FMD control that safe-guards the integrity of wild populations and the ecosystem dynamics on which human livelihoods depend while simultaneously improving socio-economic conditions of rural people. In particular, we outline five major issues that need to be considered: 1) improved understanding of the different FMD viral strains and how they circulate between domestic and wildlife populations; 2) an appreciation for the economic value of wildlife for many African countries whose presence might preclude the country from ever achieving an FMD-free status; 3) exploring ways in which livestock production can be improved without compromising wildlife such as implementing commodity-based trading schemes; 4) introducing a participatory approach involving local farmers and the national veterinary services in the control of FMD; and 5) finally the possibility that transfrontier conservation might offer new hope of integrating decision-making at the wildlife-livestock interface.  相似文献   

19.
In recent years researchers have investigated a growing number of weighted heterogeneous networks, where connections are not merely binary entities, but are proportional to the intensity or capacity of the connections among the various elements. Different degree centrality measures have been proposed for this kind of networks. In this work we propose weighted degree and strength centrality measures (WDC and WSC). Using a reducing factor we correct classical centrality measures (CD) to account for tie weights distribution. The bigger the departure from equal weights distribution, the greater the reduction. These measures are applied to a real network of Italian livestock movements as an example. A simulation model has been developed to predict disease spread into Italian regions according to animal movements and animal population density. Model’s results, expressed as infected regions and number of times a region gets infected, were related to weighted and classical degree centrality measures. WDC and WSC were shown to be more efficient in predicting node’s risk and vulnerability. The proposed measures and their application in an animal network could be used to support surveillance and infection control strategy plans.  相似文献   

20.
Despite intensive ongoing research, key aspects of the spatial-temporal evolution of the 2001 foot and mouth disease (FMD) epidemic in Great Britain (GB) remain unexplained. Here we develop a Markov Chain Monte Carlo (MCMC) method for estimating epidemiological parameters of the 2001 outbreak for a range of simple transmission models. We make the simplifying assumption that infectious farms were completely observed in 2001, equivalent to assuming that farms that were proactively culled but not diagnosed with FMD were not infectious, even if some were infected. We estimate how transmission parameters varied through time, highlighting the impact of the control measures on the progression of the epidemic. We demonstrate statistically significant evidence for assortative contact patterns between animals of the same species. Predictive risk maps of the transmission potential in different geographic areas of GB are presented for the fitted models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号