首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of protein export from the endoplasmic reticulum (ER) is facilitated by coat protein complex II (COPII). The COPII proteins deform the ER membrane into vesicles at the ER exit sites. During the vesicle formation step, the COPII proteins load cargo molecules into the vesicles. Formation of COPII vesicles has been reconstituted in vitro in yeast and in mammalian systems. These in vitro COPII vesicle formation assays involve incubation of microsomal membranes and purified COPII proteins with nucleotides. COPII vesicles are separated from the microsomes by differential centrifugation. Interestingly, the efficiency of the COPII vesicle formation with purified recombinant mammalian COPII proteins is lower than that with cytosol, suggesting that an additional cytosolic factor(s) is involved in this process. Indeed, other studies have also implicated additional factors. To facilitate biochemical identification of such regulators, a rapid and quantitative COPII vesicle formation assay is necessary because the current assay is lengthy. To expedite this assay, we generated luciferase reporter constructs. The reporter proteins were packaged into COPII vesicles and yielded quantifiable luminescent signals, resulting in a rapid and quantitative COPII vesicle formation assay.  相似文献   

2.
The COPII coat produces ER-derived transport vesicles. Recent findings suggest that the COPII coat is a highly dynamic polymer and that efficient capture of cargo molecules into COPII vesicles depends on several parameters, including export signals, membrane environment, metabolic control and the presence of a repertoire of COPII subunit homologues.  相似文献   

3.
The coat protein complex II (COPII) forms transport vesicles from the endoplasmic reticulum and segregates biosynthetic cargo from ER-resident proteins. Recent high-resolution structural studies on individual COPII subunits and on the polymerized coat reveal the molecular architecture of COPII vesicles. Other advances have shown that integral membrane accessory proteins act with the COPII coat to collect specific cargo molecules into ER-derived transport vesicles.  相似文献   

4.
COPII vesicles mediate anterograde ER-Golgi traffic of newly synthesized proteins in nutrient rich conditions. An accumulating body of results indicates that the secretory COPII vesicles can be shifted to the roles in autophagosome formation and selective ER-phagy (autophagy of ER), depending on their specific subunits, in response to environmental stresses. In this mini-review, we summarize and discuss the multifaceted roles of COPII vesicles in autophagy and the underlying molecular mechanisms.  相似文献   

5.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.  相似文献   

6.
Secretory proteins are transported from the endoplasmic reticulum (ER) in vesicles coated with coat protein complex II (COPII). To investigate the molecular mechanism of protein sorting into COPII vesicles, we have developed an in vitro budding reaction comprising purified coat proteins and cargo reconstituted proteolipsomes. Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Recombinant Emp46/47p proteins and the ER resident protein Ufe1p were reconstituted into liposomes whose composition resembles yeast ER membranes. When the proteoliposomes were mixed with COPII proteins and GMP-PNP, Emp46/47p, but not Ufe1p, were concentrated into COPII vesicles. We also show here that reconstituted Emp47p accelerates the GTP hydrolysis by Sar1p as stimulated by its GTPase-activating protein, Sec23/24p, both of which are components of the COPII coat. Furthermore, this GTP hydrolysis decreases the error of cargo sorting. We suggest that GTP hydrolysis by Sar1p promotes exclusion of improper proteins from COPII vesicles.  相似文献   

7.
Malhotra V  Erlmann P 《The EMBO journal》2011,30(17):3475-3480
COPII vesicles mediate the export of secretory cargo from endoplasmic reticulum (ER) exit sites. However, of 60-90 nm diameter COPII vesicles are too small to accommodate secreted molecules such as the collagens. The ER exit site-located proteins TANGO1 and cTAGE5 are required for the transport of collagens and therefore provide a means to understand the export of big cargo and the mechanism of COPII carrier size regulation commensurate with cargo dimensions.  相似文献   

8.
Kang BH  Staehelin LA 《Protoplasma》2008,234(1-4):51-64
Plant Golgi stacks are mobile organelles that can travel along actin filaments. How COPII (coat complex II) vesicles are transferred from endoplasmic reticulum (ER) export sites to the moving Golgi stacks is not understood. We have examined COPII vesicle transfer in high-pressure frozen/freeze-substituted plant cells by electron tomography. Formation of each COPII vesicle is accompanied by the assembly of a ribosome-excluding scaffold layer that extends approximately 40 nm beyond the COPII coat. These COPII scaffolds can attach to the cis-side of the Golgi matrix, and the COPII vesicles are then transferred to the Golgi together with their scaffolds. When Atp115-GFP, a green fluorescent protein (GFP) fusion protein of an Arabidopsis thaliana homolog of the COPII vesicle-tethering factor p115, was expressed, the GFP localized to the COPII scaffold and to the cis-side of the Golgi matrix. Time-lapse imaging of Golgi stacks in live root meristem cells demonstrated that the Golgi stacks alternate between phases of fast, linear, saltatory movements (0.9-1.25 microm/s) and slower, wiggling motions (<0.4 microm/s). In root meristem cells, approximately 70% of the Golgi stacks were connected to an ER export site via a COPII scaffold, and these stacks possessed threefold more COPII vesicles than the Golgi not associated with the ER; in columella cells, only 15% of Golgi stacks were located in the vicinity of the ER. We postulate that the COPII scaffold first binds to and then fuses with the cis-side of the Golgi matrix, transferring its enclosed COPII vesicle to the cis-Golgi.  相似文献   

9.
TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport   总被引:9,自引:0,他引:9  
TRAPP is a conserved protein complex required early in the secretory pathway. Here, we report two forms of TRAPP, TRAPP I and TRAPP II, that mediate different transport events. Using chemically pure TRAPP I and COPII vesicles, we have reconstituted vesicle targeting in vitro. The binding of COPII vesicles to TRAPP I is specific, blocked by GTPgammaS, and, surprisingly, does not require other tethering factors. Our findings imply that TRAPP I is the receptor on the Golgi for COPII vesicles. Once the vesicle binds to TRAPP I, the small GTP binding protein Ypt1p is activated and other tethering factors are recruited.  相似文献   

10.
We have established systems that reconstitute the biogenesis of coated transport vesicles with liposomes made of pure lipids and purified coat proteins. Optimization of the lipid composition in the liposomes allowed the efficient binding of both coat protein I and coat protein II (COPII) coat subunits. Coated vesicles of approximately the size generated from biomembranes were detected and characterized by centrifugation analysis and electron microscopy. A variation of this budding reaction allowed us to measure the sorting of v-SNARE proteins into synthetic COPII vesicles. We developed a novel system to tether glutathione S-transferase (GST)-hybrid proteins to the surface of liposomes formulated with a glutathione-derivatized phospholipid. This system allowed us to detect the positive role of cytoplasmic domains of two v-SNARE proteins that are packaged into COPII vesicles. Therefore, both generation of coated vesicles and protein sorting into the vesicles can be reproduced with liposomes and purified proteins.  相似文献   

11.
Coat protein complex II (COPII) is a multi-subunit protein complex responsible for the formation of membrane vesicles at the endoplasmic reticulum. The assembly of this complex on the endoplasmic reticulum membrane needs to be tightly regulated to ensure efficient and specific incorporation of cargo proteins into nascent vesicles. Recent studies of a genetic disease affecting COPII function, and a structural analysis of COPII subunit interactions emphasize the central role of the Sec23 subunit in COPII coat assembly. Similarly, the demonstration that Sec23 interacts physically and functionally with proteins involved in both vesicle tethering and the transport along microtubules indicates that the Sec23 subunit is crucially important in linking COPII vesicle formation to anterograde transport events.  相似文献   

12.
In addition to its role in forming vesicles from the endoplasmic reticulum (ER), the coat protein complex II (COPII) is also responsible for selecting specific cargo proteins to be packaged into COPII transport vesicles. Comparison of COPII vesicle formation in mammalian systems and in yeast suggested that the former uses more elaborate mechanisms for cargo recognition, presumably to cope with a significantly expanded repertoire of cargo that transits the secretory pathway. Using proTGFα, the transmembrane precursor of transforming growth factor α (TGFα), as a model cargo protein, we demonstrate in cell-free assays that at least one auxiliary cytosolic factor is specifically required for the efficient packaging of proTGFα into COPII vesicles. Using a knockout HeLa cell line generated by CRISPR/Cas9, we provide functional evidence showing that a transmembrane protein, Cornichon-1 (CNIH), acts as a cargo receptor of proTGFα. We show that both CNIH and the auxiliary cytosolic factor(s) are required for efficient recruitment of proTGFα to the COPII coat in vitro. Moreover, we provide evidence that the recruitment of cargo protein by the COPII coat precedes and may be distinct from subsequent cargo packaging into COPII vesicles.  相似文献   

13.
Formation of ER-derived protein transport vesicles requires three cytosolic components, a small GTPase, Sar1p, and two heterodimeric complexes, Sec23/24p and Sec13/31p, which comprise the COPII coat. We investigated the role of Lst1p, a Sec24p homologue, in cargo recruitment into COPII vesicles in Saccharomyces cerevisiae. A tagged version of Lst1p was purified and eluted as a heterodimer complexed with Sec23p comparable to the Sec23/24p heterodimer. We found that cytosol from an lst1-null strain supported the packaging of alpha-factor precursor into COPII vesicles but was deficient in the packaging of Pma1p, the essential plasma membrane ATPase. Supplementation of mutant cytosol with purified Sec23/Lst1p restored Pma1p packaging into the vesicles. When purified COPII components were used in the vesicle budding reaction, Pma1p packaging was optimal with a mixture of Sec23/24p and Sec23/Lst1p; Sec23/Lst1p did not replace Sec23/24p. Furthermore, Pma1p coimmunoprecipitated with Lst1p and Sec24p from vesicles. Vesicles formed with a mixture of Sec23/Lst1p and Sec23/24p were similar morphologically and in their buoyant density, but larger than normal COPII vesicles (87-nm vs. 75-nm diameter). Immunoelectronmicroscopic and biochemical studies revealed both Sec23/Lst1p and Sec23/24p on the membranes of the same vesicles. These results suggest that Lst1p and Sec24p cooperate in the packaging of Pma1p and support the view that biosynthetic precursors of plasma membrane proteins must be sorted into ER-derived transport vesicles. Sec24p homologues may comprise a more complex coat whose combinatorial subunit composition serves to expand the range of cargo to be packaged into COPII vesicles. By changing the geometry of COPII coat polymerization, Lst1p may allow the transport of bulky cargo molecules, polymers, or particles.  相似文献   

14.
Coat protein complexes contain an inner shell that sorts cargo and an outer shell that helps deform the membrane to give the vesicle its shape. There are three major types of coated vesicles in the cell: COPII, COPI, and clathrin. The COPII coat complex facilitates vesicle budding from the endoplasmic reticulum (ER), while the COPI coat complex performs an analogous function in the Golgi. Clathrin-coated vesicles mediate traffic from the cell surface and between the trans-Golgi and endosome. While the assembly and structure of these coat complexes has been extensively studied, the disassembly of COPII and COPI coats from membranes is less well understood. We describe a proteomic and genetic approach that connects the J-domain chaperone auxilin, which uncoats clathrin-coated vesicles, to COPII and COPI coat complexes. Consistent with a functional role for auxilin in the early secretory pathway, auxilin binds to COPII and COPI coat subunits. Furthermore, ER–Golgi and intra-Golgi traffic is delayed at 15°C in swa2Δ mutant cells, which lack auxilin. In the case of COPII vesicles, we link this delay to a defect in vesicle fusion. We propose that auxilin acts as a chaperone and/or uncoating factor for transport vesicles that act in the early secretory pathway.  相似文献   

15.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

16.
The yeast plasma membrane H(+)-ATPase Pma1p is one of the most abundant proteins to traverse the secretory pathway. Newly synthesized Pma1p exits the endoplasmic reticulum (ER) via COPII-coated vesicles bound for the Golgi. Unlike most secreted proteins, efficient incorporation of Pma1p into COPII vesicles requires the Sec24p homolog Lst1p, suggesting a unique role for Lst1p in ER export. Vesicles formed with mixed Sec24p-Lst1p coats are larger than those with Sec24p alone. Here, we examined the relationship between Pma1p biosynthesis and the requirement for this novel coat subunit. We show that Pma1p forms a large oligomeric complex of >1 MDa in the ER, which is packaged into COPII vesicles. Furthermore, oligomerization of Pma1p is linked to membrane lipid composition; Pma1p is rendered monomeric in cells depleted of ceramide, suggesting that association with lipid rafts may influence oligomerization. Surprisingly, monomeric Pma1p present in ceramide-deficient membranes can be exported from the ER in COPII vesicles in a reaction that is stimulated by Lst1p. We suggest that Lst1p directly conveys Pma1p into a COPII vesicle and that the larger size of mixed Sec24pLst1p COPII vesicles is not essential to the packaging of large oligomeric complexes.  相似文献   

17.
Exit from the Endoplasmic Reticulum (ER) of newly synthesized proteins is mediated by COPII vesicles that bud from the ER at the ER Exit Sites (ERESs). Disruption of ER homeostasis causes accumulation of unfolded and misfolded proteins in the ER. This condition is referred to as ER stress. Previously, we demonstrated that ER stress rapidly impairs the formation of COPII vesicles. Here, we show that membrane association of COPII components, and in particular of Sec23a, is impaired by ER stress-inducing agents suggesting the existence of a dynamic interplay between protein folding and COPII assembly at the ER.  相似文献   

18.
19.
Transport from the endoplasmic reticulum (ER) to the Golgi complex requires assembly of the COPII coat complex at ER exit sites. Recent studies have raised the question as to whether in mammalian cells COPII coats give rise to COPII-coated transport vesicles or instead form ER sub-domains that collect proteins for transport via non-coated carriers. To establish whether COPII-coated vesicles do exist in vivo, we developed approaches to combine quantitative immunogold labelling (to identify COPII) and three-dimensional electron tomography (to reconstruct entire membrane structures). In tomograms of both chemically fixed and high-pressure-frozen HepG2 cells, immuno-labelled COPII was found on ER-associated buds as well as on free approximately 50-nm diameter vesicles. In addition, we identified a novel type of COPII-coated structure that consists of partially COPII-coated, 150-200-nm long, dumb-bell-shaped tubules. Both COPII-coated carriers also contain the SNARE protein Sec22b, which is necessary for downstream fusion events. Our studies unambiguously establish the existence of free, bona fide COPII-coated transport carriers at the ER-Golgi interface, suggesting that assembly of COPII coats in vivo can result in vesicle formation.  相似文献   

20.
Selective protein export from the endoplasmic reticulum is mediated by COPII vesicles. Here, we investigated the dynamics of fluorescently labelled cargo and non‐cargo proteins during COPII vesicle formation using single‐molecule microscopy combined with an artificial planar lipid bilayer. Single‐molecule analysis showed that the Sar1p–Sec23/24p‐cargo complex, but not the Sar1p–Sec23/24p complex, undergoes partial dimerization before Sec13/31p recruitment. On addition of a complete COPII mixture, cargo molecules start to assemble into fluorescent spots and clusters followed by vesicle release from the planar membrane. We show that continuous GTPase cycles of Sar1p facilitate cargo concentration into COPII vesicle buds, and at the same time, non‐cargo proteins are excluded from cargo clusters. We propose that the minimal set of COPII components is required not only to concentrate cargo molecules, but also to mediate exclusion of non‐cargo proteins from the COPII vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号