首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model is proposed for the mechanism of flocculation interactions in yeasts in which flocculent cells have a recognition factor which attaches to alpha-mannan sites on other cells. This factor may be governed by the expression of the single, dominant gene FLO1. Isogenic strains of Saccharomyces cerevisiae, differing only at FLO1 and the marker genes ade1 and trp1, were developed to examine the components involved in flocculene. Electron microscopy and concanavalin Aferritin labeling of aggregated cells showed that extensive and intense interactions between cell wall mannan layers mediated cell aggregation. The components of the mannan layer essential for flocculence were Ca2+ ions, alpha-mannan carbohydrates, and proteins. By studying the divalent cation dependence at various pH values and in the presence of competing monovalent cations, flocculation was found to be Ca2+ dependent; however, Mg2+ and Mn2+ ions substituted for Ca2+ under certain conditions. Reversible inhibition of flocculation by concanavalin A and succinylated concanavalin A implicated alpha-branched mannan carbohydrates as one essential component which alone did not determine the strain specificity of flocculence, since nonflocculent strains interacted with and competed for binding sites on flocculent cells. FLO1 may govern the expression of a proteinaceous, lectin-like activity, firmly associated with the cell walls of flocculent cells, which bind to the alpha-mannan carbohydrates of adjoining cells. It was selectively and irreversibly inhibited by proteolysis and reduction of disulfide bonds. The potential of this system as a model for the genetic and biochemical control of cell-cell interactions is discussed.  相似文献   

2.
AIMS: To identify the nutrients that can trigger the loss of flocculation under growth conditions in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]. Yeast growth with metabolizable carbon sources (glucose, fructose, galactose, maltose or sucrose) at 2% (w/v), induced the loss of flocculation in yeast that had previously been allowed to flocculate. The yeast remained flocculent when transferred to a medium containing the required nutrients for yeast growth and a sole nonmetabolizable carbon source (lactose). Transfer of flocculent yeast into a growth medium with ethanol (4% v/v), as the sole carbon source did not induce the loss of flocculation. Even the addition of glucose (2% w/v) or glucose and antimycin A (0.1 mg l(-1)) to this culture did not bring about loss of flocculation. Cycloheximide addition (15 mg l(-1)) to glucose-growing cells stopped flocculation loss. CONCLUSIONS: Carbohydrates were the nutrients responsible for stimulating the loss of flocculation in flocculent yeast cells transferred to growing conditions. The glucose-induced loss of flocculation required de novo protein synthesis. Ethanol prevented glucose-induced loss of flocculation. This protective effect of ethanol was independent of the respiratory function of the yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the role of nutrients in the control of the flocculation cycle in NewFlo phenotype yeast strains.  相似文献   

3.
Reduced glutathione (GSH) is involved in biochemical and physiological processes in cells. Flocculation is an important mechanism in microorganisms. The present study concerned the potential relationship between GSH metabolism and flocculation. Two yeast strains, a flocculent (Kluyveromyces lactis 5c) and a nonflocculent (Kluyveromyces lactis 5a) strain, were used. The level of intracellular GSH measured during the growth period was significantly higher in the nonflocculent than in the flocculent strain; in contrast, the flocculent strain exhibited brighter staining of vacuoles than the nonflocculent strain when observed using epifluorescence microscopy. Compounds acting either on flocculation (EDTA, galactose) or on GSH metabolism (buthionine sulfoximine, and N-acetylcysteine) were tested on the flocculent strain during the growth period. Both EDTA and galactose fully inhibited flocculation and induced GSH overproduction of 58% and 153%, respectively. Buthionine sulfoximine decreased GSH level by 76% but had no effect on flocculation; N-acetylcysteine increased the GSH level and flocculation by 106% and 41%, respectively. Combination of EDTA and N-acetylcysteine produced similar effects than with each of them. Combination of galactose and N-acetylcysteine increased the GSH level but decreased flocculation. These results demonstrated that GSH homeostasis is linked to the flocculation mechanism. A hypothesis related to stress is given.  相似文献   

4.
AIMS: To examine the role of the nutrients on the onset of flocculation in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]. For cells grown in chemically defined medium (yeast nitrogen base with glucose) or in rich medium (containing yeast extract, peptone and fermentable sugars: fructose or maltose), the onset of flocculation occurred after the end of exponential respiro-fermentative phase of growth being coincident with the attainment of the lower level of carbon source in the culture medium. Cells, in exponential respiro-fermentative phase of growth, transferred to a glucose-containing medium without nitrogen source, developed a flocculent phenotype, while these carbon source starved cells, in the presence of all other nutrients that support growth, did not flocculate. In addition, cells in exponential phase of growth, under catabolite repression, when transferred to a medium containing 0.2% (w/v) of fermentable sugar (fructose or maltose) or 2% (v/v) ethanol, showed a rapid triggering of flocculation, while when incubated in 2% (v/v) glycerol did not develop a flocculent phenotype. CONCLUSIONS: The onset of flocculation occurs when a low sugar and/or nitrogen concentration is reached in culture media. The triggering of flocculation is an energetic dependent process influenced by the carbon source metabolism. The presence of external nitrogen source is not necessary for developing a flocculent phenotype. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the role of nutrients on the onset of flocculation in NewFlo phenotype yeast strains. This information might be useful to the brewing industry, in the control of yeast flocculation, as the time when the onset of flocculation occurs can determine the fermentation performance and the beer quality.  相似文献   

5.
Flocculation is an eco-friendly process of cell separation, which has been traditionally exploited by the brewing industry. Cell surface charge (CSC), cell surface hydrophobicity (CSH) and the presence of active flocculins, during the growth of two (NCYC 1195 and NCYC 1214) ale brewing flocculent strains, belonging to the NewFlo phenotype, were examined. Ale strains, in exponential phase of growth, were not flocculent and did not present active flocculent lectins on the cell surface; in contrast, the same strains, in stationary phase of growth, were highly flocculent (>98%) and presented a hydrophobicity of approximately three to seven times higher than in exponential phase. No relationship between growth phase, flocculation and CSC was observed. For comparative purposes, a constitutively flocculent strain (S646-1B) and its isogenic non-flocculent strain (S646-8D) were also used. The treatment of ale brewing and S646-1B strains with pronase E originated a loss of flocculation and a strong reduction of CSH; S646-1B pronase E-treated cells displayed a similar CSH as the non-treated S646-8D cells. The treatment of the S646-8D strain with protease did not reduce CSH. In conclusion, the increase of CSH observed at the onset of flocculation of ale strains is a consequence of the presence of flocculins on the yeast cell surface and not the cause of yeast flocculation. CSH and CSC play a minor role in the auto-aggregation of the ale strains since the degree of flocculation is defined, primarily, by the presence of active flocculins on the yeast cell wall.  相似文献   

6.
Depending on the genetic background of Saccharomyces strains, a wide range of phenotypic adhesion identities can be directly attributed to the FLO11-encoded glycoprotein, which includes asexual flocculation, invasive growth and pseudohyphal formation, flor formation and adhesion to biotic and abiotic surfaces. In a previous study, we reported that HSP30-mediated stationary-phase expression of the native chromosomal FLO11 ORF in two nonflocculent commercial Saccharomyces cerevisiae wine yeast strains, BM45 or VIN13 did not generate a flocculent phenotype under either standard laboratory media or synthetic MS300 must fermentation conditions. In the present study, the BM45- and VIN13-derived HSP30p-FLO11 wine yeast transformants were observed to be exclusively and strongly flocculent under authentic red wine-making conditions, thus suggesting that this specific fermentation environment specifically contributes to the development of a flocculent phenotype, which is insensitive to either glucose or mannose. Furthermore, irrespective of the strain involved this phenotype displayed both Ca(2+)-dependent and Ca(2+)-independent flocculation characteristics. A distinct advantage of this unique FLO11-based phenotype was highlighted in its ability to dramatically promote faster lees settling rates. Moreover, wines produced by BM45-F11H and VIN13-F11H transformants were significantly less turbid than those produced by their wild-type parental strains.  相似文献   

7.
The biological control of flocculation interactions by factors related to growth under different conditions of aeration was documented with a new assay for flocculence. The degree of flocculence expressed in a genetically defined Saccharomyces cerevisiae strain (FLO1/FLO1 ade1/ade1) remained constant during aerobic growth but varied with aeration. Flocculence was repressed in anaerobically growing cells but was induced in stationary cells or cells returned to aerobic growth. Repression was correlated with the selective inactivation of cell surface lectin-like components. The changes in flocculence were accompanied by changes in 16 extractable proteins separated by electrophoresis; however, a clear correlation between specific protein bands and flocculence could not be established. The study clearly demonstrated that the phenotypic expression of FLO1 could be reproducibly manipulated for experimental purposes by aeration alone.  相似文献   

8.
The present work reviews and critically discusses the aspects that influence yeast flocculation, namely the chemical characteristics of the medium (pH and the presence of bivalent ions), fermentation conditions (oxygen, sugars, growth temperature and ethanol concentration) and the expression of specific genes such as FLO1, Lg‐FLO1, FLO5, FLO8, FLO9 and FLO10. In addition, the metabolic control of loss and onset of flocculation is reviewed and updated. Flocculation has been traditionally used in brewing production as an easy and off‐cost cell‐broth separation process. The advantages of using flocculent yeast strains in the production of other alcoholic beverages (wine, cachaça and sparkling wine), in the production of renewal fuels (bio‐ethanol), in modern biotechnology (production of heterologous proteins) and in environmental applications (bioremediation of heavy metals) are highlighted. Finally, the possibility of aggregation of yeast cells in flocs, as an example of social behaviour (a communitarian strategy for long‐time survival or a means of protection against negative environmental conditions), is discussed.  相似文献   

9.
Co-flocculation between cells of beer yeast IFO 2018, a flocculent strain, and non-flocculent strains was investigated by means of a chemical modification method. Treatment with periodate deprived non-flocculent cells, but not flocculent cells, of the ability to co-flocculate. Treatment with mercaptoethanol or photo-irradiation in the presence of methylene blue deprived flocculent cells, but not non-flocculent cells, of the co-flocculating ability. Mercaptoethanol-treated or photoirradiated flocculent cells (beer yeast IFO 2018) co-flocculated with periodate-treated flocculent cells, but periodate-treated cells subsequently subjected to mercaptoethanol treatment or photoirradiation neither flocculated by themselves nor co-flocculated with other cells. Thus, it is likely that both protein and carbohydrate components of the yeast cell surface play important roles in the mutual recognition and intercellular interaction involved in flocculation. It is strongly suggested that the essential carbohydrate which is widely distributed among Saccharomyces species is the mannan fraction on the cell wall, and that a flocculent yeast strain produces surface protein component(s) which recognize and bind the mannan component of adjacent cells.  相似文献   

10.
Flocculation of yeasts is a cell–cell aggregation phenomenon which is driven by interactions between cell wall lectins and cell wall heteropolysaccharides. In Sabouraud medium, Kluyveromyces bulgaricus was highly flocculent. Incubation of flocculent K. bulgaricus cells with EDTA or Hecameg® led to extracts showing hemagglutinating and flocculating properties. Purification of the extracts by native PAGE gave two bands which allowed flocculation of deflocculated K. bulgaricus. Both bands with specific reflocculating activity were composed of five subunits, of which only three possessed weak reflocculating activity upon deflocculated yeast. The mixture of these three proteins allow the recovery of initial specific reflocculating activity of the complex. These three proteins, denoted p28, p36 and p48, presented, in their first 15 amino acids, homologies with glycolysis enzymes, i.e., 3-phosphoglycerate mutase, glyceraldehyde-3-phosphate dehydrogenase and enolase, respectively. However, no such enzymatic activity could be detected in the crude extract issued from treatment with EDTA and Hecameg® of flocculent yeast cells. When yeasts had grown in glucose poor medium, flocculation was drastically affected. The EDTA and Hecameg® crude extracts showed weak reflocculating activity. After PAGE, the protein complexes did not appear in the EDTA extract, but they did appear in the Hecameg® crude extract. These results suggest that: (i) self-flocculation of K. bulgaricus depends on the expression of different floc-forming protein complex, (ii) these proteins are galactose specific lectins showing homologies in their primary structure with glycolysis enzymes.  相似文献   

11.
Flocculent yeast Saccharomyces cerevisiae YF234 (MATa ura3–52 trp1Δ2 his ade 2–1 can1–100 sta1 FLO8) cells overexpressing glyoxalase I and having strong flocculation ability were permeabilized with isopropyl alcohol and ethanol under various conditions. The treatment with 40% isopropyl alcohol significantly improves the initial reaction rates of recombinant flocculent yeast cells. Moreover, the reactivity of permeabilized flocculent yeast cells was similar to that of dispersed cells with EDTA. On the other hand, the flocculation ability of yeast cells was not affected by the treatment with alcohol solutions of various concentrations and treatment time length. Therefore, the recombinant flocculent yeast cells permeabilized with alcohol are very effective whole cell biocatalysts.  相似文献   

12.
AIMS: To examine the effect of different stress conditions on the onset of flocculation in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]; plasma membrane integrity was accessed using propidium iodide and the staining of the yeast cell wall was performed using calcofluor white M2R. Cells in exponential phase of growth were subjected to different stress conditions. The addition of 1%, 3% and 5% (v/v) ethanol, 1% and 3% (v/v) isopropanol or a brief heat shock (52 degrees C, 5 min), did not induce an early flocculation phenotype when compared with control cells. The addition of 10% (v/v) ethanol, a continuous mild heat-stress (37 degrees C) or an osmotic stress (0.5 or 1 mol l(-1) of NaCl) did not induce a flocculent phenotype. CONCLUSIONS: Flocculation seems not to be induced as a response to different chemical (ethanol and isopropanol) and physical (heat and osmotic) stress conditions. Conversely, osmotic and ethanol [10% (v/v)] stress, as well as a continuous mild heat shock (37 degrees C), have a negative impact on the phenotype expression of flocculation. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings reported here contribute to the elucidation of the control of yeast flocculation. This information might be useful to the brewing industry, as the time when the onset of flocculation occurs can determine the fermentation performance and the beer quality, as well as in other biotechnological industries where flocculation can be used as a cell separation process.  相似文献   

13.
14.
Interaction between nonflocculent and flocculent cells of Saccharomyces cerevisiae was studied. Adhesion experiments were done using three types of nonflocculent cells and a flocculent one. Two types of nonflocculent cells were obtained from the flocculent strain by changing environmental growth conditions. The integration of nonflocculent cells in the flocs was observed by two different methods: measurement of the sedimentation capacity of mixtures and microscopic observation of stained nonflocculent cells blended with flocculent cells. It was possible to verify that cell-cell interaction corresponds to a true stable binding and not to a simple entrapment inside the floc matrix.  相似文献   

15.
A continuous open loop bioreactor was used to induce flocculation in an originally nonflocculent strain ofKluyveromyces marxianus. The sedimentation capacity of the isolated strain was of such a magnitude that the cell concentration inside the fermentor was 50 times larger than in the effluent. Also, a batch system was used with the same objective, but no flocculation was obtained.The kinetic parameters of the flocculent strain were compared with those of the mother strain. It was shown that both maximum specific growth rate and maximum specific ethanol production rate were lower in the flocculent strain. Ethanol had a larger inhibitory effect on the kinetic parameters of the isolated strain. Also, the batch fermentations with this strain presented a larger final biomass concentration and a reduced ethanol yield.  相似文献   

16.
M H Straver  G Smit    J W Kijne 《Applied microbiology》1994,60(8):2754-2758
Analysis of a shear supernatant from flocculent, "fimbriated" Saccharomyces cerevisiae brewer's yeast cells revealed the presence of a protein involved in flocculation of the yeast cells and therefore designated a flocculin. The molecular mass of the flocculin was estimated to be over 300 kDa, as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel permeation chromatography of the flocculin yielded an aggregate with an apparent molecular weight of > 2,000. The flocculin was found to be protease sensitive, and the sequence of its 16 N-terminal amino acids revealed at least 69% identity with the predicted N terminus of the putative protein encoded by the flocculation gene FLO1. The flocculin was isolated from flocculent S. cerevisiae cells, whereas only a low amount of flocculin, if any, could be isolated from nonflocculent cells. The flocculin was found to stimulate the flocculation ability of flocculent yeast cells without displaying lectinlike activity (that is, the ability to agglutinate yeast cells).  相似文献   

17.
The lectin-like theory suggest that yeast flocculation is mediated by an aggregating lectinic factor. In this study we isolated an agglutinating factor, which corresponds to lectin, from whole cells by treating the flocculent wild-type Saccharomyces cerevisiae NCYC 625 strain and its weakly flocculent mutant [rho degrees ] with EDTA and two non-ionic surfactants (Hecameg and HTAC). The dialysed crude extracts obtained in this way agglutinated erythrocytes and this hemagglutination was specifically inhibited by mannose and mannose derivatives. However, SDS-PAGE profiles showed that the three reagents had different effects on the yeast cells. The non-ionic surfactants appeared to be the most efficient, as their extracts possessed the highest specific agglutinating activity. The products released by the wild-type strain presented a higher specific agglutinating activity than those released by the [rho degrees ] mutant. Purification of the agglutinating factor from extracts of both strains by affinity chromatography revealed two active bands of relative mass of 26 and 47 kDa on SDS-PAGE. Mass spectrometry analysis by MALDI-TOF, identified a 26 kDa band as the triose phosphate isomerase (TPI) whereas a 47 kDa band was identical to enolase. Edman degradation showed that the N-terminal sequences of these proteins were similar to TPI and enolase, respectively. The difference in the flocculation behaviour of the two strains is due to changes in the protein composition of the cell wall and in the protein structure involved in cell-cell recognition.  相似文献   

18.
19.
Escherichia coli has two forms of catalases, HPI and HPII. Both enzymes, but mainly HPII, are induced in cells reaching the stationary growth phase or under anaerobic conditions and are repressed in the presence of glucose. The induction at the stationary phase is dependent onfnr, a gene that regulates the expression of anaerobically induced proteins. The inhibition by glucose is not affected by cyclic AMP (cAMP) but is reduced in acrp mutant. The results show that HPII belongs to the group of genes controlled by the Fnr protein and is catabolically repressed in a manner that is independent of cAMP.  相似文献   

20.
A new plasmid construct has been used in conjunction with selective recycle to successfully maintain otherwise unstable plasmid-bearing E. coli cells in a continuous bioreactor and to produce significant amounts of the plasmid-encoded protein beta-lactamase. The plasmid is constructed so that pilin expression, which leads to bacterial flocculation, is under control of the tac operon. The plasmid-bearing cells are induced to flocculate in the separator, whereas cell growth and product synthesis occur in the main fermentation vessel without the inhibiting effects of pilin production. Selective recycle allows for the maintenance of the plasmid-bearing cells by separating flocculent, plasmid-bearing cells from nonflocculent, segregant cells in an inclined settler, and recycling only the plasmid-bearing cells to the reactor. As a result, product expression levels are maintained that are more than ten times the level achieved without selective recycle. All experimental data agree well with theoretical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号