首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of bivalent cations on cytochrome b5 reduction by NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase were studied with the proteinase-solubilized enzymes. Cytochrome b5 reduction by NADH:cytochrome b5 reductase was strongly inhibited by CaCl2 or MgCl2. When 1.2 microM-cytochrome b5 was used, the concentrations of CaCl2 and MgCl2 required for 50% inhibition (I50) were 8 and 18 mM respectively. The inhibition was competitive with respect to cytochrome b5. The extent of inhibition by CaCl2 or MgCl2 was much higher than that by KCl or other alkali halides. In contrast, cytochrome b5 reduction by NADPH:cytochrome c reductase was extremely activated by CaCl2 or MgCl2. In the presence of 5 mM-CaCl2, the activity was 24-fold higher than control when 4.4 microM-cytochrome b5 was used. The magnitude of activation by CaCl2 was 2-3-fold higher than that by MgCl2. The activation by these salts was much higher than that by KCl, indicating that bivalent cations play an important role in this activation. The mechanisms of inhibition and activation by bivalent cations of cytochrome b5 reduction by these two microsomal reductases are discussed.  相似文献   

3.
Age-dependent decrease in cytochrome b5 was observed in erythrocytes from both a normal person and a patient with hereditary methaemoglobinaemia without neurological symptoms. With aging, concentrations of cytochrome b5 in erythrocytes from the patient were almost the same as those in the control. Age-dependent decrease in cytochrome b5 reductase activity in the control erythrocytes was also shown; however, the reductase activity was very low in erythrocytes from the patient over the whole age range. Our studies show that methaemoglobin content of erythrocytes seems to be dependent on the content of cytochrome b5 in the cells, both in the control subject and in the patient.  相似文献   

4.
Cytochrome b5 was purified from detergent solubilized sheep liver microsomes by using three successive DEAE-cellulose, and Sephadex G-100 column chromatographies. It was purified 54-fold and the yield was 23.5% with respect to microsomes. The apparent Mr of cytochrome b5 was estimated to be 16,200 +/- 500 by SDS-PAGE. Absolute absorption spectrum of the purified cytochrome b5 showed maximal absorption at 412 nm and dithionite-reduced cytochrome b5 gave peaks at 557, 526.5 and 423 nm. The ability of the purified sheep liver cytochrome b5 to transfer electrons from NADH-cytochrome b5 reductase to cytochrome c was investigated. The K(m) and Vmax values were calculated to be 0.088 microM cytochrome b5 and 315.8 microM cytochrome c reduced/min/mg enzyme, respectively. Also the reduction of cytochrome b5 by reductase was studied and K(m) and Vmax values were determined to be 5 microM cytochrome b5 and 5200 nmol cytochrome b5 reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating concentration of cytochrome b5 were found to be 0.0017 mM NADH and 6944 nmol cytochrome b5 reduced/min/mg enzyme, respectively. NADH-cytochrome b5 reductase was also partially purified from the same source, detergent solubilized sheep liver microsomes, by using two successive DEAE-cellulose, and 5'-ADP-agarose affinity column chromatographies. It was purified 144-fold and the yield was 7% with respect to microsomes. The apparent monomer Mr of reductase was estimated to be 34,000 by SDS-PAGE. When ferricyanide was used as an electron acceptor, reductase showed maximum activity between 6.8 and 7.5. The K(m) and Vmax values of the enzyme for ferricyanide were calculated as 0.024 mM ferricyanide and 673 mumol ferricyanide reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating amounts of ferricyanide were found to be 0.020 mM NADH and 699 mumol ferricyanide reduced/min/mg enzyme, respectively.  相似文献   

5.
Preparations of amidinated cytochrome b5 and cytochrome b5 reductase, cross-linked by using a soluble carbodiimide to promote the formation of covalent bonds between carboxyl groups of the hemeprotein and nucleophilic residues of the flavoprotein at the surfaces involved in protein-protein contacts during electron transfer, have been used to characterize the charge pair interactions that occur during electron transfer between the free proteins. Sequence analyses of tryptic, V8 protease-, and Asp-N protease-generated peptides show that the heme propionyl carboxyl group at the surface of the cytochrome forms an ester bond with Ser162 of the reductase, thus implicating Lys163 as the normal participant in ionic bonding between the active sites of the two proteins. Moreover, Lys41 and Lys125 directly form amide bonds with carboxyl residues on the active-site surface of the cytochrome. In the case of Lys41, this involves Glu52 and/or Glu60, and Glu47 and/or Glu48 for Lys125, again implicating these residues as the groups that form charge pairs during normal interactions between the active sites of the two proteins.  相似文献   

6.
Dissociation constants K(d) for cytochrome P450 reductase (reductase) and cytochrome P450 2B4 are measured in the presence of various substrates. Aminopyrine increases the dissociation constant for binding of the two proteins. Furthermore, cytochrome b(5) (b(5)) stimulates metabolism of this substrate and dramatically decreases the substrate-related K(d) values. Experiments are performed to test if the b(5)-mediated stimulation is effected through a conformational change of P450. The effects of a redox-inactive analogue of b(5) (Mn b(5)) on product formation and reaction stoichiometry are determined. Variations in the concentration of Mn b(5) stock solution that have been shown to effect the aggregation state of the protein alter the rate of P450-mediated NADPH oxidation but have no effect on the rate of product formation. Thus, the electron transfer capability of b(5) is necessary for stimulation of metabolism. Furthermore, stopped flow spectrometry measurements of the rate of first electron reduction of the P450 by reductase indicate that the coupling of P450 2B4-mediated metabolism improves, in the presence of Mn b(5), with slower delivery of the first electron of the catalytic cycle by the reductase. These results are consistent with a model involving the regulation of the P450 catalytic cycle by conformational changes of the P450 enzyme. We propose that the conformational change(s) necessary for progression of the catalytic cycle is inhibited when reduced, but not oxidized, reductase is bound to the P450.  相似文献   

7.
NADPH-cytochrome c reductase also reduces cytochrome b 5. The reduction is very slow when the proteins are in solution or bound to different membranes. Only when both proteins share a common membrane, is cytochrome b 5 reduced rapidly by NADPH. The difference in reaction rates indicates recombination on a common membrane of cytochrome b 5 and NADPH reductase originally bound to different vesicles. The recombination of the two proteins occurs with a variety of biological membranes (previously enriched with either reductase or cytochrome b 5) as well as with liposomes. We explain this process as protein transfer rather than vesicle fusion for several reasons: 1. The vesicles do not alter shape or size during incubation. 2. The rate of this process corresponds to the rate of incorporation of the single proteins into liposomes carrying the 'complementary' protein. 3. The exchange of proteins between biological membranes and liposomes occupied by protein does not change the density of either membrane. Protein transfer between membranes appears to be limited to those proteins which had spontaneously recombined with a preformed membrane. In contrast, proteins incorporated into liposomes by means of a detergent were not transferred, nor were endogenous cytochrome b 5 and NADPH-cytochrome c reductase transferred from microsomes to Golgi membranes or lipid vesicles. We conclude that the endogenous proteins and proteins incorporated in the presence of a detergent are linked to the membrane in another manner than the same proteins which had been inserted into a preformed membrane.  相似文献   

8.
An antibody preparation elicited against purified, lysosomal-solubilized NADH-cytochrome b5 reductase from rat liver microsomes was shown to interact with methemoglobin reductase of human erythrocytes by inhibiting the rate of erythrocyte cytochrome b5 reduction by NADH. The ferricyanide reductase activity of the enzyme was not inhibited by the antibody, suggesting that the inhibition of methemoglobin reductase activity may be due to interference with the binding of cytochrorme b5 to the flavoprotein. Under conditions of limiting concentrations of flavoprotein, the antibody inhibited the rate of methemoglobin reduction in a reconstituted system consisting of homogeneous methemoglobin reductase and cytochrome b5 from human erythrocytes. This inhibition was due to the decreased level of reduced cytochrome b5 during the steady state of methemoglobin reduction while the rate of methemoglobin reduction per reduced cytochrome b5 stayed constant, suggesting that the enzyme was not concerned with an electron transport between the reduced cytochrome b5 and methemoglobin.An antibody to purified, trypsin-solubilized cytochrome b5 from rat liver microsomes was shown to inhibit erythrocyte cytochrome b5 reduction by methemoglobin reductase and NADH to a lesser extent than microsomal cytochrome b5 preparations from rat liver (trypsin solubilized or detergent solubilized) and pig liver (trypsin solubilized). The results presented establish that soluble methemoglobin reductase and cytochrome b5 of human erythrocytes are immunochemically similar to NADH-cytochrome b5 reductase and cytochrome b5 of liver microsomes, respectively.  相似文献   

9.
10.
A water-soluble carbodiimide has been used to promote the formation of amide bonds between carboxyl residues on cytochrome b5 and lysyl residues on cytochrome b5 reductase. The visible and UV absorption spectrum of the purified cross-linked complex was identical with the sum of the spectra of the individual enzymes, and the average apparent molecular weight of the complex, determined by sodium dodecyl sulfate-gel electrophoresis, was within 12% of the sum of the apparent molecular weights of the two monomeric enzymes, indicating that the cross-linked derivative was a dimer containing one molecule each of cytochrome b5 and cytochrome b5 reductase. When reconstituted into phospholipid vesicles, the amphipathic derivative showed substantially reduced Vmax values with the soluble electron acceptors potassium ferricyanide, cytochrome b5 heme peptide and cytochrome c, and with the membrane-bound acceptors amphipathic cytochrome b5 and stearyl-CoA desaturase. The soluble catalytic fragment of the derivative, produced by limited digestion with subtilisin Carlsberg, showed similar decreases in Vmax values with the above soluble acceptors. In contrast, intradimer electron transfer in the soluble fragment, measured by stopped flow spectrophotometry at 2 degrees C was very efficient. Ninety per cent of the cytochrome b5 in the derivative was reduced with a first order rate constant of 51 s-1 upon the addition of NADH; the transfer of electrons from NADH to the reductase FAD prosthetic group, which is known to be the rate-limiting step in the reductase reaction mechanism, proceeded with an apparent rate constant of 57 s-1 under these conditions. These kinetic data show that the enzymes in the complex are cross-linked together at the surfaces involved in protein-protein contacts during electron transfer in an orientation similar to that assumed during electron transfer between the free proteins.  相似文献   

11.
The steady-state kinetics of ubiquinol: cytochrome c reductase (cytochrome bc1 complex) is analyzed in this work. The graphical pattern of the titrations is clearly indicative of a ping-pong mechanism, but the two products ubiquinone and reduced cytochrome c behave competitively with their substrate and noncompetitively with the other substrate. Hence, the mechanism of the reductase is of a ping-pong two-site type. A minimal reaction scheme for the enzymatic mechanism is proposed and approximate values of its rate constants are deduced on the assumption that each substrate is in rapid equilibrium at its catalytic site. This has been substantiated by presteady-state measurements of the reduction and oxidation of cytochrome b by a short-chain homolog of ubiquinol. Values of the rate constants of the reaction scheme have been deduced from the steady-state titrations for a series of 2,3-dimethoxy-5-methyl quinols having different hydrophobic substituents in position 6 of the ring. The results provide a quantitative estimation of the specificity of the quinol catalytic site in the transmembrane portion of the bc1 complex. In particular, a reasonable correlation is found between the rate of the second-order reaction of quinols with the enzyme and their solubility in lipids.  相似文献   

12.
Marohnic CC  Bewley MC  Barber MJ 《Biochemistry》2003,42(38):11170-11182
Microsomal cytochrome b(5) reductase (EC 1.6.2.2) catalyzes the reduction of ferricytochrome b(5) using NADH as the physiological electron donor. Site-directed mutagenesis has been used to engineer the soluble rat cytochrome b(5) reductase diaphorase domain to utilize NADPH as the preferred electron donor. Single and double mutations at residues D239 and F251 were made in a recombinant expression system that corresponded to D239E, S and T, F251R, and Y, D239S/F251R, D239S/F251Y, and D239T/F251R, respectively. Steady-state turnover measurements indicated that D239S/F251Y was bispecific while D239T, D239S/F251R, and D239T/F251R were each NADPH-specific. Wild-type (WT) cytochrome b(5) reductase showed a 3700-fold preference for NADH whereas the mutant with the highest NADPH efficiency, D239T, showed an 11-fold preference for NADPH, a 39200-fold increase. Wild-type cytochrome b(5) reductase only formed a stable charge-transfer complex with NADH while D239T formed complexes with both NADH and NADPH. The rates of hydride ion transfer, determined by stopped-flow kinetics, were k(NADH-WT) = 130 s(-1), k(NADPH-WT) = 5 s(-1), k(NADH-D239T) = 180 s(-1), and k(NADPH-D239T) = 73 s(-1). K(s) determinations by differential spectroscopy demonstrated that D239T could bind nonreducing pyridine nucleotides with a phosphate or a hydroxyl substituent at the 2' position, whereas wild-type cytochrome b(5) reductase would only bind 2' hydroxylated molecules. Oxidation-reduction potentials (E degrees ', n = 2) for the flavin cofactor were WT = -268 mV, D239T = -272 mV, WT+NAD(+) = -190 mV, D239T+NAD(+) = -206 mV, WT+NADP(+) = -253 mV, and D239T+NADP(+) = -215 mV, which demonstrated the thermodynamic contribution of NADP(+) binding to D239T. The crystal structures of D239T and D239T in complex with NAD(+) indicated that the loss of the negative electrostatic surface that precluded 2' phosphate binding in the wild-type enzyme was primarily responsible for the observed improvement in the use of NADPH by the D239T mutant.  相似文献   

13.
The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylation. The conversion of CYP6A1 to its P420 form was decreased by the addition of apo-b5. The effects of cytochrome b5 may involve allosteric modification of the P450 enzyme that modify the conformation of the active site. The overall stoichiometry of the P450 reaction was substrate-dependent. High uncoupling of CYP6A1 was observed with generation of hydrogen peroxide, in excess over the concomitant testosterone hydroxylation or heptachlor epoxidation. Inclusion of cytochrome b5 in the reconstituted system improved efficiency of oxygen consumption and electron utilization from NADPH, or coupling of the P450 reaction. Depending on the reconstitution conditions, coupling efficiency varied from 8 to 25% for heptachlor epoxidation, and from 11 to 70% for testosterone hydroxylation. Because CYP6A1 is a P450 involved in insecticide resistance, this suggests that xenobiotic metabolism by constitutively overexpressed P450s may be linked to significant oxidative stress in the cell that may carry a fitness cost.  相似文献   

14.
15.
Upon incubation of detergent-solubilized NADPH-cytochrome P-450 reductase and either cytochrome b5 or cytochrome c in the presence of a water-soluble carbodiimide, a 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), covalently cross-linked complex was formed. The cross-linked derivative was a heterodimer consisting of one molecule each of flavoprotein and cytochrome, and it was purified to 90% or more homogeneity. The binary covalent complex between the flavoprotein and cytochrome b5 was exclusively observed following incubation of all three proteins including NADPH-cytochrome P-450 reductase, cytochrome b5, and cytochrome c in L-alpha-dimyristoylphosphatidylcholine vesicles, and no heterotrimer could be identified. The isolated reductase-cytochrome b5 complex was incapable of covalent binding with cytochrome c in the presence of EDC. No clear band for covalent complex formation between PB-1 and reductase was seen with the present EDC cross-linking technique. More than 90% of the cross-linked cytochrome c in the purified derivative was rapidly reduced upon addition of an NADPH-generating system, whereas approximately 80% of the cross-linked cytochrome b5 was rapidly reduced. These results showed that in the greater part of the complexes, the flavin-mediated pathway for reduction of cytochrome c or cytochrome b5 by pyridine nucleotide was intact. When reconstituted into phospholipid vesicles, the purified amphipathic derivative could hardly reduce exogenously added cytochrome c, cytochrome b5, or PB-1, indicating that the cross-linked cytochrome shields the single-electron-transferring interface of the flavoprotein. These results suggest that the covalent cross-linked derivative is a valid model of the noncovalent functional electron-transfer complex.  相似文献   

16.
17.
18.
19.
Genetically engineered cytochrome b5 has been used to quantitative binding interactions of this protein with cytochrome P-450cam and sperm whale metmyoglobin by static fluorescence titration. Two cytochrome b5 mutants were constructed by cassette mutagenesis to replace a surface threonine residue with cysteine at two crystallographically defined positions, 65 and 8, located 11 and 21 A, respectively, from the nearest heme edge. The T65C and T8C mutant proteins were labeled with the sulfhydryl selective fluorescent reagent, acrylodan, which provided a spectral probe for monitoring protein-protein association. The fluorescence emission spectra of the acrylodan-labeled T65C mutant exhibited an ionic strength-dependent, blue-shifted fluorescence enhancement upon binding met-myoglobin, cytochrome c, and cytochrome P-450cam, whereas the acrylodan-labeled T8C mutant fluorescence emission remained unchanged during all titrations. Dissociation constants of 1.3, 0.6, and 0.5 microM, pH 7.15, were measured for metmyoglobin, cytochrome P-450cam, and cytochrome c, respectively. A similar averaged binding surface for cytochrome P-450cam and cytochrome c is suggested by their closely related degree of fluorescence enhancement, degree of emission blue shift, and binding free energies. Myoglobin binds less tightly, enhances fluorescence to a greater extent, and exhibits a larger blue shift in acrylodan emission spectra suggesting a different averaged binding orientation relative to the acrylodan probe.  相似文献   

20.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号