首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Cytochromes P450 of the 4A family metabolize a variety of fatty acids, prostaglandins, and eicosanoids mainly at the terminal carbon (omega-hydroxylation) and, to a lesser extent, at the penultimate carbon [(omega-1)-hydroxylation]. In the present study, cytochrome P4504A5 (4A5) has been successfully expressed in Escherichia coli, with an average yield of enzyme of approximately 80 nmol/liter of cells. Spectroscopic characterization of the purified enzyme, using electron paramagnetic resonance and absolute and substrate-perturbed optical difference spectroscopy, showed that the heme of resting 4A5 is primarily low spin, but is converted primarily to high spin by substrate binding. The kcat and Km values for laurate omega-hydroxylation were 41 min-1 and 8.5 microM, respectively, in the absence of cytochrome b5, and 138 min-1 and 38 microM, respectively, in the presence of cytochrome b5. Hydroxylation of palmitate was dependent on the presence of cytochrome b5; kcat and Km values were 48 min-1 and 122 microM, respectively. Hydroxylation of arachidonic acid was barely detectable and was unchanged by the addition of cytochrome b5.  相似文献   

2.
The reduction of hexavalent chromium (Cr(VI] by the monooxygenase components was studied. Both a reconstituted system of cytochrome P-450 (P-450) and cytochrome b5 (b5) with NADPH was capable of reducing Na2CrO4 (30 microM) provided anaerobic atmosphere. The rates were 1.29 nmol Cr.min-1 nmol P-450(-1) and 0.73 nmol Cr.min-1 nmol b5(-1). Using NADH instead of NADPH gave very low reducing activities, confirming the enzymic nature of the P-450 dependent Cr(VI) reductase reaction. Oxygen, 22% (air) and 0.1% gave 89% and 69% inhibition of Cr(VI) reducing activity, respectively. Carbon monoxide (100%) caused an inhibition of about 37% and 44% for P-450 and b5, respectively. Externally added flavin mononucleotide (FMN) (3 microM) or Fe-ADP (10 microM) to the complete system stimulated the enzymatic reaction about 2-fold and 3-fold, respectively.  相似文献   

3.
1. Lung NADH-cytochrome b5 reductase was saturated with its artificial substrate, potassium ferricyanide at approximately 0.1 mM ferricyanide concentration, and the activity of the lung enzyme was inhibited by the higher concentrations of potassium ferricyanide. Ferricyanide at 0.5 and 1.0 mM inhibited the activity of the enzyme by about 20 and 61% respectively. The apparent Km value was calculated as 13.7 microM potassium ferricyanide and 4.3 microM NADH. 2. The Michaelis constants for cytochrome b5 and NADH were determined to be 1.67 and 7.7 microM from the Lineweaver-Burk plots. These results demonstrate that affinity of the lung reductase for its natural substrate is almost 10 times higher than that for potassium ferricyanide. 3. Addition of non-ionic detergent stimulated the rate of reductase-catalyzed reduction of lung cytochrome b5 up to 8.2-fold. 4. Kinetic studies performed with lung reductase by varying NADH and cytochrome b5 concentrations at different fixed concentrations at cytochrome b5 or NADH showed a series of parallel lines indicating a "ping-pong" type of kinetic mechanism for interaction of NADH and cytochrome b5 with lung cytochrome b5 reductase.  相似文献   

4.
Cytochrome b558, which is considered to be an essential component of the phagocytic superoxide (O2-)-generating system, was highly purified from porcine neutrophils. The isolated cytochrome was resolved into two polypeptides with molecular masses of 60-90 and 19 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. For enzymatic reduction of purified cytochrome b558, we utilized hepatic NADPH-cytochrome P450 reductase purified from rat liver microsomes. More than 80% of the cytochrome was reduced by incubation with the reductase and NADPH under the anaerobic condition, and was quickly reoxidized by the air. As indicated by measurement of oxygen consumption, the purified cytochrome catalytically reduced oxygen at a rate equal to approximately 30% of the activity of the phorbol myristate acetate-activated cells on the basis of cytochrome b558 content. Electron paramagnetic resonance study with a spin trapping agent 5, 5-dimethyl-1-pyrroline-1-oxide demonstrated that O2- is the exclusive primary product in the reduction of oxygen by the cytochrome. This gives direct evidence that cytochrome b558 functions as the terminal oxidizing enzyme in the O2- -generating system of neutrophils. This also establishes a new functional class of heme proteins that catalyzes one-electron reduction of molecular oxygen.  相似文献   

5.
A gene has been constructed coding for a unique fusion protein, NADH:cytochrome c reductase, that comprises the soluble heme-containing domain of rat hepatic cytochrome b(5) as the amino-terminal portion of the protein and the soluble flavin-containing domain of rat hepatic cytochrome b(5) reductase as the carboxyl terminus. The gene has been expressed in Escherichia coli resulting in the highly efficient production of a functional hybrid hemoflavoprotein which has been purified to homogeneity by a combination of ammonium sulfate precipitation, affinity chromatography on 5'-ADP agarose, and size-exclusion chromatography. The purified protein exhibited a molecular mass of approximately 46 kDa by polyacrylamide gel electrophoresis and 40,875 Da, for the apoprotein, using mass spectrometry which also confirmed the presence of both heme and FAD prosthetic groups. The fusion protein showed immunological cross-reactivity with both anti-rat cytochrome b(5) and anti-rat cytochrome b(5) reductase antibodies indicating the conservation of antigenic determinants from both native domains. Spectroscopic analysis indicated the fusion protein contained both a b-type cytochrome and flavin chromophors with properties identical to those of the native proteins. Amino-terminal and internal amino acid sequencing confirmed the identity of peptides derived from both the heme- and flavin-binding domains with sequences identical to the deduced amino acid sequence. The isolated fusion protein retained NADH:ferricyanide reductase activity (k(cat) = 8.00 x 10(2) s(-1), K(NADH)(m) = 4 microM, K(FeCN(6))(m) = 11 microM) comparable to that of that of native NADH:cytochrome b(5) reductase and also exhibited both NADH:cytochrome c reductase activity (k(cat) = 2.17 x 10(2) s(-1), K(NADH)(m) = 2 microM, K(FeCN(6))(m) = 11 microM, K(Cyt.c)(m) = 1 microM) and NADH:methemoglobin reductase activity (k(cat) = 4.40 x 10(-1) s(-1), K(NADH)(m) = 3 microM, K(mHb)(m) = 47 microM), the latter two activities indicating efficient electron transfer from FAD to heme and retention of physiological function. This work represents the first successful bacterial expression of a soluble, catalytically competent, rat hepatic cytochrome b(5)-cytochrome b(5) reductase fusion protein that retains the functional properties characteristic of the individual heme and flavin domain.  相似文献   

6.
The microsomal enzyme ascorbate-cytochrome b5 reductase participates in the ascorbate-dependent fatty acid desaturation. Three pieces of evidence are given for this statement: 1) Comparison of the rate of ascorbate-dependent oleate formation with the rate of reduction of cytochrome b5 in microsomes and in the isolated detergent form shows that only the enzymatic reduction of cytochrome b5 is fast enough to support oleate formation; 2) added enriched ascorbate-cytochrome b5 reductase increases the rate of return of stearoyl-CoA oxidised cytochrome b5 back to the reduced state; 3) addition of enriched ascorbate-cytochrome b5 reductase increases the rate of ascorbate-dependent oleate formation in rat liver microsomes.  相似文献   

7.
Assimilatory NADH:nitrate reductase (EC 1.6.6.1), a complex Mo-pterin-, cytochrome b(557)-, and FAD-containing protein, catalyzes the regulated and rate-limiting step in the utilization of inorganic nitrogen by higher plants. A codon-optimized gene has been synthesized for expression of the central cytochrome b(557)-containing fragment, corresponding to residues A542-E658, of spinach assimilatory nitrate reductase. While expression of the full-length synthetic gene in Escherichia coli did not result in significant heme domain production, expression of a Y647* truncated form resulted in substantial heme domain production as evidenced by the generation of "pink" cells. The histidine-tagged heme domain was purified to homogeneity using a combination of NTA-agarose and size-exclusion FPLC, resulting in a single protein band following SDS-PAGE analysis with a molecular mass of approximately 13 kDa. MALDI-TOF mass spectrometry yielded an m/z ratio of 12,435 and confirmed the presence of the heme prosthetic group (m/z=622) while cofactor analysis indicated a 1:1 heme to protein stoichiometry. The oxidized heme domain exhibited spectroscopic properties typical of a b-type cytochrome with a visible Soret maximum at 413 nm together with epr g-values of 2.98, 2.26, and 1.49, consistent with low-spin bis-histidyl coordination. Oxidation-reduction titrations of the heme domain indicated a standard midpoint potential (E(o)') of -118 mV. The isolated heme domain formed a 1:1 complex with cytochrome c with a K(A) of 7 microM (micro=0.007) and reconstituted NADH:cytochrome c reductase activity in the presence of a recombinant form of the spinach nitrate reductase flavin domain, yielding a k(cat) of 1.4 s(-1) and a K(m app) for cytochrome c of 9 microM. These results indicate the efficient expression of a recombinant form of the heme domain of spinach nitrate reductase that retained the spectroscopic and thermodynamic properties characteristic of the corresponding domain in the native spinach enzyme.  相似文献   

8.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome.  相似文献   

9.
Cytochrome b5 was purified from detergent solubilized sheep liver microsomes by using three successive DEAE-cellulose, and Sephadex G-100 column chromatographies. It was purified 54-fold and the yield was 23.5% with respect to microsomes. The apparent Mr of cytochrome b5 was estimated to be 16,200 +/- 500 by SDS-PAGE. Absolute absorption spectrum of the purified cytochrome b5 showed maximal absorption at 412 nm and dithionite-reduced cytochrome b5 gave peaks at 557, 526.5 and 423 nm. The ability of the purified sheep liver cytochrome b5 to transfer electrons from NADH-cytochrome b5 reductase to cytochrome c was investigated. The K(m) and Vmax values were calculated to be 0.088 microM cytochrome b5 and 315.8 microM cytochrome c reduced/min/mg enzyme, respectively. Also the reduction of cytochrome b5 by reductase was studied and K(m) and Vmax values were determined to be 5 microM cytochrome b5 and 5200 nmol cytochrome b5 reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating concentration of cytochrome b5 were found to be 0.0017 mM NADH and 6944 nmol cytochrome b5 reduced/min/mg enzyme, respectively. NADH-cytochrome b5 reductase was also partially purified from the same source, detergent solubilized sheep liver microsomes, by using two successive DEAE-cellulose, and 5'-ADP-agarose affinity column chromatographies. It was purified 144-fold and the yield was 7% with respect to microsomes. The apparent monomer Mr of reductase was estimated to be 34,000 by SDS-PAGE. When ferricyanide was used as an electron acceptor, reductase showed maximum activity between 6.8 and 7.5. The K(m) and Vmax values of the enzyme for ferricyanide were calculated as 0.024 mM ferricyanide and 673 mumol ferricyanide reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating amounts of ferricyanide were found to be 0.020 mM NADH and 699 mumol ferricyanide reduced/min/mg enzyme, respectively.  相似文献   

10.
Human hepatic cytochrome P450 3A4 (CYP3A4) was expressed in yeast Saccharomyces cerevisiae. While the expression level was high as compared with other human hepatic cytochrome P450s, CYP3A4 showed almost no catalytic activity toward testosterone. Coexpression of CYP3A4 with yeast NADPH-P450 reductase did not give a full activity. Low monooxygenase activity of CYP3A4 was attributed to the insufficient reduction of heme iron of CYP3A4 by NADPH-P450 reductase. To enhance the efficiency of electron transfer from NADPH-P450 reductase to CYP3A4, a fused enzyme was constructed between CYP3A4 and yeast NADPH-P450 reductase. The rapid reduction of the heme iron of the fused enzyme by NADPH was observed. The fused enzyme showed a high testosterone 6beta-hydroxylation activity with a sigmoidal velocity saturation curve. However, the coupling efficiency between NADPH utilization and testosterone 6beta-hydroxylation was only 10%. Finally, coexpression of the fused enzyme and human cytochrome b5 was examined. A significant decrease in the Km value and a remarkable increase in the coupling efficiency were observed. Substrate-induced spectra revealed that the dissociation constant of the fused enzyme for testosterone significantly decreased with coexpression of human cytochrome b5. These results strongly suggest that human cytochrome b5 directly interacts with the CYP3A4 domain of the fused enzyme and modifies the tertiary structure of substrate binding pocket, resulting in tight binding of the substrate and high coupling efficiency.  相似文献   

11.
Incorporation of detergent-solubilized cytochrome b5 into phenobarbital-induced rabbit liver microsomal fractions decelerates hexobarbital-dependent reduction of ferric cytochrome P-450; this is accompanied by retardation of NADPH utilization and H2O2 formation in the assay media. Integration of manganese-substituted cytochrome b5 into the microsomal preparations fails to affect these parameters. Analysis of the cytochrome P-450 reduction kinetics in the presence of increasing amounts of cytochrome b5 reveals a gradual augmentation of the amplitude of slow-phase electron transfer at the expense of the relative contribution of the fast phase; finally, a slow, apparently monophasic reaction persists. This defect in enzymatic reduction is not due to detergent effects and also does not seem to reflect cytochrome b5-induced perturbation of anchoring of NADPH-cytochrome c(P-450) reductase to cytochrome P-450. Experiments with the highly purified cytochrome P-450 isozyme LM2, in which amino acid residue(s) close to the heme edge had undergone suicidal inactivation through covalent attachment of chloramphenicol metabolite(s) do not exclude the possibility that cytochrome b5 and reductase might compete for a common electron transmission site on the terminal acceptor. Hence, the inhibitory action of cytochrome b5 on the reduction of ferric cytochrome P-450 is tentatively attributed to partial substitution of the former pigment for reductase in direct transport of the first electron to the monooxygenase.  相似文献   

12.
The gene coding for expression of an endogenous soluble fusion protein comprising a b-type cytochrome-containing domain and a FAD-containing domain has been cloned from rat liver mRNA. The 1461-bp hemoflavoprotein gene corresponded to a protein of 493 residues with the heme- and FAD-containing domains comprising the amino and carboxy termini of the protein, respectively. Sequence analysis indicated the heme and flavin domains were directly analogous to the corresponding domains in microsomal cytochrome b(5) (cb5) and cytochrome b(5) reductase (cb5r), respectively. The full-length fusion protein was purified to homogeneity and demonstrated to contain both heme and FAD prosthetic groups by spectroscopic analyses and MALDI-TOF mass spectrometry. The cb5/cb5r fusion protein was able to utilize both NADPH and NADH as reductants and exhibited both NADPH:ferricyanide (k(cat) = 21.7 s(-1), K(NADPH)(m) = 1 microM. K(FeCN6)(m) = 8 microM) and NADPH:cytochrome c (k(cat) = 8.3 s(-1), K(NADPH)(m) = 1 microM. K(cyt c)(m) = 7 microM) reductase activities with a preference for NADPH as the reduced pyridine nucleotide substrate. NADPH-reduction was stereospecific for transfer of the 4R-proton and involved a hydride transfer mechanism with a kinetic isotope effect of 3.1 for NADPH/NADPD. Site-directed mutagenesis was used to examine the role of two conserved histidine residues, H62 and H85, in the heme domain segment. Substitution of either residue by alanine or methionine resulted in the production of simple flavoproteins that were effectively devoid of both heme and NAD(P)H:cytochrome c reductase activity while retaining NAD(P)H:ferricyanide activity, confirming that the former activity required a functional heme domain. These results have demonstrated that the rat cb5/cb5r fusion protein is homologous to the human variant and has identified the heme and FAD as the sites of interaction with cytochrome c and ferricyanide, respectively. Mutagenesis has confirmed the identity of both axial heme ligands which are equivalent to the corresponding residues in microsomal cytochrome b(5).  相似文献   

13.
Addition of exogenous NADH to rotenone- and antimycin A-treated mitochondria, in 125 mM KCl, results in rates of oxygen uptake of 0.5-1 and 10-12 nanoatoms of oxygen X mg protein-1 X min-1 in the absence and presence of cytochrome c, respectively. During oxidation of exogenous NADH there is a fast and complete reduction of cytochrome b5 while endogenous or added exogenous cytochrome c become 10-15% and 100% reduced, respectively. The reoxidation of cytochrome b5, after exhaustion of NADH, precedes that of cytochrome c. NADH oxidation is blocked by mersalyl, an inhibitor of NADH-cytochrome b5 reductase. These observations support the view of an electron transfer from the outer to the inner membrane of intact mitochondria. Both the rate of exogenous NADH oxidation and the steady state level of cytochrome c reduction increase with the increase of ionic strength, while the rate of succinate oxidation undergoes a parallel depression. These observations suggest that the functions of cytochrome c as an electron carrier in the inner membrane and as an electron shuttle in the intermembrane space are alternative. It is concluded that aerobic oxidation of exogenous NADH involves the following pathway: NADH leads to NADH-cytochrome b5 reductase leads to cytochrome b5 leads to intermembrane cytochrome c leads to cytochrome oxidase leads to oxygen. It is suggested that the communication between the outer and inner membranes mediated by cytochrome c may affect the oxidation-reduction level of cytosolic NADH and the related oxidation-reduction reactions.  相似文献   

14.
Nitric oxide reductase was purified from Paracoccus denitrificans very nearly to homogeneity by a simple method that involved the use of octyl glucoside to solubilize the enzyme from membranes and required a single hydroxyapatite column. The enzyme had specific activities of about 10 mumol NO reduced x min-1 x mg-1 at pH 6.5 in an amperometric assay system using phenazine methosulfate/ascorbate as the reducing agent and about 22 mumol NO reduced x min-1 x mg-1 at pH 5.0, which is the optimum pH. These values are based on average rates over kinetically complex progress curves and would be about three times greater if based on maximum rate values. The enzyme appeared to be reversibly inhibited by NOaq and to have a Km too low (probably less than or equal to 1 microM) to measure reliably by the amperometric method. The effective second-order rate constant of the enzyme lay within 1 to 2 orders of magnitude of the diffusion controlled limit. The enzyme was composed of a tight complex of two cytochromes: a cytochrome c (Mr = 17,500) and a cytochrome b (Mr = 38,000). The mole ratios of cytochrome c to cytochrome b and Mr 17,500 peptide to Mr 38,000 peptide were both about 1.7, and the heme content was about 3 mol/73,000 g (38,000 + 2(17,500)). Each subunit therefore contained only one heme group. The Mr 38,000 peptide aggregated when heated in the sample buffer used for sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to the ascorbate-based activity, the enzyme showed a little NADH-NO oxidoreductase activity which was not inhibited by antimycin A. The enzyme lost activity with a half-life of about 2 days at 4 degrees C but could be preserved at -20 degrees C and in liquid nitrogen. It seemed not to be inactivated by aerobic solutions. These observations, and the recent ones by Carr and Ferguson (Carr, G.J., and Ferguson, S.J. (1990) Biochem. J. 269, 423-429) with a partially purified preparation of nitric oxide reductase, establish that the enzyme from Pa. denitrificans is a cytochrome bc complex which resembles that from Pseudomonas stutzeri (Heiss, B., Frunzke, K., and Zumft, W.G. (1989) J. Bacteriol. 171, 3288-3297). There would appear to be no functional relationship between nitric oxide reductase and a Mr = 34,000 peptide of Pa. denitrificans membranes reported previously to be present in purified preparations of a nitric oxide reductase (Hoglen, J., and Hollocher, T.C. (1989) J. Biol. Chem. 264, 7556-7563).  相似文献   

15.
The kinetics of flavin semiquinone reduction of the components of the 1:1 complex formed by cytochrome c with either cytochrome b5 or a derivative of cytochrome b5 in which the heme propionates are esterified (DME-cytochrome b5) have been studied. The rate constant for the reduction of horse heart cytochrome c by the electrostatically neutral lumiflavin semiquinone (LfH) is unaffected by complexation with native cytochrome b5 at pH 7. However, complex formation with DME-cytochrome b5 (pH 7) decreases by 35% the rate constant for cytochrome c reduction by LfH. At pH 8, complex formation with native cytochrome b5 decreases the rate constant for cytochrome c reduction by LfH markedly, whereas the rate constant for cytochrome c reduction, either unbound or in the complex formed with DME-cytochrome b5, is increased 2-fold relative to pH 7. These results indicate that the accessibility of the cytochrome c heme is not the same in the complexes formed with the two cytochrome b5 derivatives and that the docking geometry of the complex formed by the two native cytochromes is pH dependent. Binding of horse heart and tuna cytochromes c to native and DME-cytochromes b5 decreases the rate constants for reduction of cytochrome c by the negatively charged flavin mononucleotide semiquinone (FMNH) by approximately 30% and approximately 40%, respectively. This finding is attributed to substantial neutralization of the positive electrostatic potential surface of cytochrome c that occurs when it binds to either form of cytochrome b5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A major inducible form of heme oxygenase (EC 1.14.99.3) was purified from liver microsomes of chicks pretreated with cadmium chloride. The purification involved solubilization of microsomes with Emulgen 913 and sodium cholate, followed by DEAE-Sephacel, carboxymethyl-cellulose (CM-52) and hydroxyapatite chromatography, and FPLC through Superose 6 and 12 columns operating in series. The final product gave a single band on silver-stained SDS/polyacrylamide gels (Mr = 33,000). Optimal conditions for measurement of activity of solubilized heme oxygenase were studied. In a reconstituted system containing purified heme oxygenase, NADPH-cytochrome reductase, biliverdin reductase and NADPH, the Km for free heme was 3.8 +/- 0.5 microM; for heme in the presence of bovine serum albumin (5 mol heme/3 mol albumin) the Km was 5.0 +/- 0.8 microM; and the Km for NADPH was 6.1 +/- 0.4 microM (all values mean +/- SD, n = 3). Oxygen concentration as low as 15 microM, with saturating concentrations of heme and NADPH, did not affect the reaction rate, indicating that the supply of oxygen is not involved in the physiological regulation of activity of the enzyme. The pH optimum of the reaction was 7.4; at 37 degrees C, the apparent Vmax was 580 +/- 44 nmol biliverdin.(mg protein)-1.min-1 and the molecular activity was 19.2 min-1. Biliverdin IXa was the sole biliverdin isomer formed. In the presence of purified biliverdin reductase, biliverdin was converted quantitatively to bilirubin. Addition of catalase to the reconstituted system decreased the breakdown of heme to non-biliverdin products and led to nearly stoichiometric conversion of heme to biliverdin. Activity of the enzyme in the reconstituted system was inhibited by metalloporphyrins in the following order of decreasing potency: tin mesoporphyrin greater than tin protoporphyrin greater than zinc protoporphyrin greater than manganese protoporphyrin greater than cobalt protoporphyrin. Protoporphyrin (3.3 or 6.6 microM) (and several other porphyrins) and metallic ions (100 microM) alone had little if any inhibitory effect, except for Hg2+ which inhibited by 67% at 10 microM and totally at 15 microM. Following partial cleavage, fragments of the purified enzyme were sequenced. Comparison of sequences to those derived from cDNA sequences for the major inducible rat and human heme oxygenase showed 69% and 76% similarities, respectively. The histidine residue at position 132 of rat heme oxygenase-1 and the residues (Lys128-Arg136) flanking His132 were conserved in all three enzymes, as well as in the corresponding portion of a fourth less highly similar rat enzyme, heme oxygenase-2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Monodehydroascorbate reductase (EC 1.6.5.4) was purified from cucumber fruit to a homogeneous state as judged by polyacrylamide gel electrophoresis. The cucumber monodehydroascorbate reductase was a monomer with a molecular weight of 47,000. It contained 1 mol of FAD/mol of enzyme which was reduced by NAD(P)H and reoxidized by monodehydroascorbate. The enzyme had an exposed thiol group whose blockage with thiol reagents inhibited the electron transfer from NAD(P)H to the enzyme FAD. Both NADH and NADPH served as electron donors with Km values of 4.6 and 23 microM, respectively, and Vmax of 200 mol of NADH and 150 mol of NADPH oxidized mol of enzyme-1 s-1. The Km for monodehydroascorbate was 1.4 microM. The amino acid composition of the enzyme is presented. In addition to monodehydroascorbate, the enzyme catalyzed the reduction of ferricyanide and 2,6-dichloroindophenol but showed little reactivity with calf liver cytochrome b5 and horse heart cytochrome c. The kinetic data suggested a ping-pong mechanism for the monodehydroascorbate reductase-catalyzed reaction. Cucumber monodehydroascorbate reductase occurs in soluble form and can be distinguished from NADPH dehydrogenase, NADH dehydrogenase, DT diaphorase, microsome-bound NADH-cytochrome b5 reductase, and NADPH-cytochrome c reductase by its molecular weight, amino acid composition, and specificity of electron acceptors and donors.  相似文献   

18.
In this report we provide data, for the first time, demonstrating the conversion of the heme moiety of certain cytochrome P-450 and P-420 preparations, to biliverdin, catalyzed by heme oxygenase. We have used purified preparations of cytochromes P-450c, P-450b, P-450/P-420c, or P-450/P-420b as substrates in a heme oxygenase assay system reconstituted with heme oxygenase isoforms, HO-2 or HO-1, NADPH-cytochrome c (P-450) reductase, biliverdin reductase, NADPH, and Emulgen 911. With cytochrome P-450b or P-450/P-420b preparations, a near quantitative conversion of degraded heme to bile pigments was observed. In the case of cytochrome P-450/P-420c approximately 70% of the degraded heme was accounted for as bilirubin but only cytochrome P-420c was appreciably degraded. The role of heme oxygenase in this reaction was supported by the following observations: (i) bilirubin formation was not observed when heme oxygenase was omitted from the assay system; (ii) the rate of degradation of the heme moiety was at least threefold greater with heme oxygenase and NADPH-cytochrome c (P-450) reductase than that observed with reductase alone; and (iii) the presence of Zn- or Sn-protoporphyrins (2 microM), known competitive inhibitors of heme oxygenase, resulted in 70-90% inhibition of bilirubin formation.  相似文献   

19.
Lauric acid in-chain hydroxylation is inhibited in microsomes from Jerusalem artichoke tubers (Helianthus tuberosus L.) incubated with 9-decenoic, 11-dodecenoic, or 11-dodecynoic acids. 9-Decenoic acid is at best a weak competitive inhibitor of the in-chain hydroxylase, but inactivates the enzyme in a time-dependent, pseudo-first-order process with a rate constant of approximately 1.1 X 10(-3) s-1. In contrast, 11-dodecenoic acid causes a slower, time-dependent loss of the hydroxylase activity, but is a potent competitive inhibitor of the enzyme (Ki = 2 microM). Neither agent decreases the microsomal concentration of cytochrome b5, NADH-cytochrome b5 reductase, or NADPH cytochrome P-450 reductase. Cinnamic acid 4-hydroxylation, catalyzed by a cytochrome P-450 enzyme, is not affected by concentrations of 9-decenoic acid that suppress lauric acid hydroxylation. 11-Dodecenoic acid is much less specific and, at higher concentrations, markedly reduces the microsomal cytochrome P-450 content, and the hydroxylation of both lauric and cinnamic acids.  相似文献   

20.
Anaerobic cytochrome c552 was purified to electrophoretic homogeneity by ion-exchange chromatography and gel filtration from a mutant of Escherichia coli K 12 that synthesizes an increased amount of this pigment. Several molecular and enzymatic properties of the cytochrome were investigated. Its relative molecular mass was determined to be 69 000 by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. It was found to be an acidic protein that existed in the monomeric form in the native state. From its heme and iron contents, it was concluded to be a hexaheme protein containing six moles of heme c/mole protein. The amino-acid composition and other properties of the purified cytochrome c552 indicated its similarity to Desulfovibrio desulfuricans hexaheme cytochrome. The cytochrome c552 showed nitrite and hydroxylamine reductase activities with benzyl viologen as an artificial electron donor. It catalyzed the reduction of nitrite to ammonia in a six-electron transfer. FMN and FAD also served as electron donors for the nitrite reduction. The apparent Michaelis constants for nitrite and hydroxylamine were 110 microM and 18 mM, respectively. The nitrite reductase activity of the cytochrome c552 was inhibited effectively by cupric ion and cyanide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号