首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The (Ca2+ + Mg2+-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tej?ka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81–88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 μM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only.  相似文献   

2.
The (Ca2+ + Mg2+)-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tejcka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81-88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 microM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only.  相似文献   

3.
5'-Nucleotidase I (N-I) from rabbit heart was purified to homogeneity. After ammonium sulfate precipitation, the purification involved chromatography on phosphocellulose, DEAE-Sepharose, AMP-agarose, and ADP-agarose. The pure enzyme has a specific activity of 318 mumol (mg of protein)-1 min-1. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate yields a subunit molecular weight of 40,000. N-I is activated by ADP but not by ATP, in contrast to the 5'-nucleotidase (N-II) purified by Itoh et al. (1986), which is activated by ATP and, less well, by ADP. N-I displays sigmoidal saturation kinetics in the absence of ADP and hyperbolic kinetics in the presence of ADP. Partially purified N-I was previously shown to prefer AMP over IMP as substrate (Truong et al., 1988); this has been confirmed for pure N-I. Comparison of AMP and ADP concentrations reported to occur in heart with the kinetic behavior of N-I implicates N-I as the enzyme responsible for producing adenosine under conditions leading to a rise in ADP and AMP, such as hypoxia or increased workload. N-I is not activated by the ADP analogue adenosine 5'-methylenediphosphonate (AOPCP) and is only weakly inhibited by relatively high concentrations of AOPCP, in contrast to 5'-nucleotidase from plasma membrane, which is powerfully inhibited by this analogue. N-I shows an absolute dependence on Mg2+ ions. Mn2+ and Co2+ ions can replace Mg2+ ions as activator; Ni2+ and Fe2+ are much less effective, while Ca2+, Ba2+, Zn2+, and Cu2+ fail to activate the enzyme.  相似文献   

4.
Adenylate cyclase of plasma membranes from the nonpregnant rabbit myometrium shows the maximum activity at pH 7.7-7.9, is characterized by apparent Km for ATP amounting to 0.38 +/- 0.09 mM, V--125 +/- 34.4 pmol min/mg protein, is activated at most by 15-20 mM Mg2+ and F-. Adenylate cyclase of plasma membranes from the pregnant rabbit myometrium is characterized by apparent Km for ATP amounting to 0.74 +/- 0.06 mM, V--77.3 +/- 6.0 pmol/min/mg protein, is activated at most by 5-10 mM Mg2+ and 10-15 mM F-; the pH optimum for the adenylate cyclase in this functional state is 7.3. Adenylate cyclase in the state of labour is characterized by apparent Km for ATP amounting to 0.46 +/- 0.11 mM, V--34.8 +/- 4.6 pmol/min/mg protein, is activated at most by 10-15 mM Mg2+ and F-, shows the same activity at pH 7.3-8.5. Adenylate cyclase of myometrium in three investigated states is activated by 2 mM EGTA; 10(-7) M Ca2+ decreases activation caused by EGTA; higher concentrations of Ca2+ decrease the basal activity of the enzyme.  相似文献   

5.
4-Methyl-5-hydroxyethylthiazole kinase (ThiM) participates in thiamin biosynthesis as the key enzyme in its salvage pathway. We purified and characterized ThiM from Escherichia coli. It has broad substrate specificity toward various nucleotides and shows a preference for dATP as a phosphate donor over ATP. It is activated by divalent cations, and responds more strongly to Co2+ than to Mg2+.  相似文献   

6.
Soluble tyrosine hydroxylase from human pheochromocytoma, bovine adrenal medulla and rat striatum can be activated by Mg2+, ATP and cyclic AMP. In pheochromocytoma, this activation is due to a decreased Km for the pterin cofactor, whereas in adrenal medulla, it is a result of an increase in the Vmax. Norepinephrine increases the Km for pterin cofactor for tyrosine hydroxylase from both of these tissues. The Ki for norepinephrine is not altered by the presence of Mg2+, ATP and cyclic AMP with enzyme from pheochromocytoma or adrenal medulla. On the other hand, striatal tyrosine hydroxylase shows a two-fold increase in the Ki for dopamine after exposure to Mg2+, ATP and cyclic AMP.  相似文献   

7.
The residual acidic α-mannosidase activity from mannosidosis tissues, representing between 1 and 8 % of the activity found in normal tissues, was significantly activated by Zn2+ and Co2+, whereas these metal ions respectively activated or inhibited the acidic enzyme activity from normal tissues. The defective enzyme from mannosidosis liver bound most effectively to the synthetic substrate in the presence of Co2+. This metal ion also improved the hydrolysis of a natural substrate by the acidic enzyme from mannosidosis liver. The results indicate that the defective enzyme in the disease has an altered capacity to bind metal ions. The demonstration that this defective enzyme can be activated may have an important bearing on the therapy of the disease.  相似文献   

8.
The coupling of various agonist receptors to the hydrolysis of phosphoinositides has generated much interest in the nature of the phospholipase C that is activated. Here we report the purification of a bovine brain phospholipase C derived from the particulate fraction. A 1000-fold purification was achieved by a combination of heparin-Sepharose, DEAE-cellulose and gel-permeation chromatography. The purified enzyme appears to be monomeric and under denaturing conditions shows a single staining major polypeptide of molecular mass 154 kDa in SDS gels. The enzyme is specific for phosphoinositides although it shows a marked preference for the polyphosphoinositides. With phosphatidylinositol 4,5-bisphosphate as substrate the enzyme expresses a specific activity of greater than 100 mumol min-1 mg-1. The phospholipase C is activated by Ca2+ (0.1-10 microM). The behaviour of this particulate enzyme is discussed in the context of a agonist-induced phosphatidylinositol hydrolysis.  相似文献   

9.
Phosphoenolpyruvate carboxykinase from rat liver cytosol is activated by Fe2+ ions in either direction of catalysis. Preincubation of the purified enzyme with Fe2+ ions causes a time-dependent irreversible loss of activity; this is not seen with unpurified enzyme. Purified enzyme can be protected from inactivation by Fe2+ ions by partially purified protein fractions from liver (ferroactivator fractions). The possible role of ferroactivator and Fe2+ ions in regulating phosphoenolpyruvate carboxykinase is discussed.  相似文献   

10.
A deoxyribonuclease, isolated from the mycelia of Aspergillus niger, grown as surface cultures on a liquid medium, was partially purified and had an optimum pH of 9.5 and an optimum temperature of 37°C. The enzyme was strongly activated by Mg2+ while Mn2+, Ca2+ or Co2+ activated the enzyme to lesser extents. Thiol reagents, mercaptoethanol and dithiothreitol (DTT) activated the enzyme. S-Adenosylmethionine at low concentration (2.8?5.0 × 10?2 mM) activated the enzyme but at a higher concentration (11.5 × 10?2 mM) and above it inhibited the enzyme. The effect of EDTA on the enzyme was variable. The enzyme had both ATP-dependent and independent activities, the former usually being higher. ATP could be replaced by CTP or GTP. The nucleoside diphosphates ADP, CDP and GDP could replace ATP but they were not as effective as the triphosphates.  相似文献   

11.
Chymotryptic digestion of postsynaptic densities releases a soluble, catalytically active fragment of the alpha (Mr 50,000) subunit of the neuronal cytoskeletal calmodulin-dependent protein kinase II. The purified soluble form of the kinase likewise yields the fragment. Denaturation of the enzyme results in more extensive proteolytic degradation. 125I-Iodopeptide maps of the isolated catalytic portions of both forms of the enzyme are similar and are contained within the map of the isolated alpha subunit. Catalytic fragments of both forms of the enzyme comigrate on two-dimensional SDS-PAGE/isoelectric focusing with pI 6.7-7.2. The fragment phosphorylates microtubule-associated protein (MAP-2) but is not activated by Ca+2/calmodulin nor is it inhibited by trifluoperazine. Km values for MAP-2 and ATP are indistinguishable from those of the holoenzyme, while the Vmax is similar to that of the holoenzyme activated with Ca+2/calmodulin. Overlays of Western blots of fragment with 125I-calmodulin shows a loss of calmodulin binding. Both the number of phosphorylation sites and the ability to autophosphorylate are markedly reduced in the catalytic fragment. Evaluation of the hydrodynamic parameters of the purified fragment yielded Mr value of 25,600 with a frictional ratio (f/f0) of 1.12; the Mr value determined by SDS-PAGE was 30,000. Thus, the catalytic fragment appears to represent an activated form of the kinase with a monomeric, globular structure unlike the native enzyme which exhibits oligomerization and cytoskeletal association. These results are consistent with a tertiary structure for the calmodulin-dependent protein kinase that contains distinct domains responsible for catalytic activity, regulation by calmodulin, cytoskeletal association and the multimeric organization of enzyme subunits.  相似文献   

12.
Peroxidase bound to the membrane either ionically or covalently, but not the free enzyme, is inhibited by polyamines and activated by guanidines. The ionically bound peroxidase detached from the membrane by Ca2+, or the peroxidase present in the cytosolic fraction, can be associated with the membrane fraction from which the ionically bound enzyme is removed, by Ca2+. The reconstituted membrane fraction, either with the enzyme solubilized by Ca2+, or with the cytosolic enzyme, can again be modulated by these compounds by changing the affinity of the enzyme for its substrate.  相似文献   

13.
从大豆叶片中分离能水解磷酸烯醇式丙酮酸(PEP)的酸性磷酸酯酶,通过硫酸胺分部(20%~50%饱和度)沉淀、DEAE纤维素层析、刀豆球蛋白琼脂糖凝胶亲和层析将酶纯化了422.47倍,活性达78.16U/mg蛋白。该酶对PEP专一性不强,Km为1.09mmol/L(PEP),最适pH5.8,在pH4.8~7.0范围内及60℃以下较稳定,水解PEP的活性被Mg2+、Mn2+激活,F、Cu2+、Zn2+、PO43、MoO42及3磷酸甘油酸(3PGA)、三磷酸腺苷ATP等代谢物抑制,受异柠檬酸等有机酸影响较小。  相似文献   

14.
The role of Mg2+ in the activation of phosphoenzyme hydrolysis has been investigated with the (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles. The enzyme of the native and solubilized vesicles was phosphorylated with ATP at 0 degrees C, pH 7.0, in the presence of Ca2+ and Mg2+. When Ca2+ and Mg2+ in the medium were chelated, phosphoenzyme hydrolysis continued for about 15 s and then ceased. The extent of this hydrolysis increased with increasing concentrations of Mg2+ added before the start of phosphorylation. This shows that the hydrolysis was activated by the Mg2+ added. The Mg2+ which activated phosphoenzyme hydrolysis was distinct from Mg2+ derived from MgATP bound to the substrate site. The Mg2+ site at which Mg2+ combined to activate phosphoenzyme hydrolysis was located on the outer surface of the vesicular membranes. During the catalytic cycle, Mg2+ combined with the Mg2+ site before Ca2+ dissociated from the Ca2+ transport site of the ADP-sensitive phosphoenzyme with bound Ca2+. This Mg2+ did not activate hydrolysis of the ADP-sensitive phosphoenzyme with bound Ca2+, but markedly activated hydrolysis of the ADP-insensitive phosphoenzyme without bound Ca2+. It is concluded that during the catalytic cycle, Mg2+ activates phosphoenzyme hydrolysis only after Ca2+ has dissociated from the Ca2+ transport site of phosphoenzyme.  相似文献   

15.
Isocitrate lyase (EC 4.1.3.1) was purified from acetate-grown cells of Candida brassicae E-17, by ammonium sulfate fractionation and DEAE-cellulose and Sephadex G-200 gel filtration column chromatographies. The purified enzyme was electrophoretically homogeneous. The molecular weight of this enzyme was 290,000 by gel filtration, and it was composed of four identical subunits whose molecular weights were 71,000 each. The pH and temperature optima were 6.8 and 37°C, respectively. The enzyme was stable from pH 6.0 to 7.0. The enzyme was activated by Mg2+ and the maximum activity was obtained with a concentration of 8 mM Mg2+. The enzyme was also activated by Mn2+ and Ba2+. The activity of this enzyme was stimulated by reducing agents. The Km values for dl-isocitrate were 1.5 mM in sodium phosphate buffer and 0.62 mM in imidazole-HCl buffer.  相似文献   

16.
A species of Erwinia was found to produce no other pectolytic enzyme than the two transeliminases of exo-types, namely, an oligogalacturonide transeliminase and an exopectic acid transeliminase. Of the two enzymes, the exopectic acid transeliminase was isolated and its properties were investigated. The results are as follows: (1) Pectic acids having an unsaturated galacturonic acid residue at the non-reducing end of the molecule are susceptible but oxidized or reduced pectic acids resistant to the enzyme action. (2) The enzyme has no activity toward pectinic acid and polymethylpolygalacturonate methyl glycoside. The limit of the enzymatic degradation for citrus pectic acid is 43.8%. (3) The rate of the enzyme activity was maximal with tetragalacturonic acid and followed by acid-soluble pectic acid, acid-insoluble pectic acid, pectic acid and trigalacturonic acid. Unlike the oligogalacturonide transeliminases of Pseudomonas sp. (strain S2) and Erwinia aroideae, the present enzyme shows a considerably high activity toward pectic acids of high molecular weight. (4) The pH-activity curves vary with the buffer employed. (5) The enzyme is activated by Co2+ and Mn2+ but powerfully inhibited by Cu2+ and Hg2+. Ca2+ has no significant effect on the enzyme activity.  相似文献   

17.
A cytoplasmic dynein ATPase has been identified in three species of unfertilized sea urchin eggs, Strongylocentrotus droebachiensis, S. purpuratus, and Arbacia punctulata. The enzyme was partially purified by sucrose gradient density centrifugation, and its polypeptide chain weight and composition were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The protein has enzymatic characteristics in common with flagellar dynein. It is activated nearly equally by Mg2+ and Ca2+, has no activity in the presence of K+ and EDTA, shows a specificity for ATP over other nucleoside triphosphates, and is inhibited by vanadate anion. On SDS-PAGE, the enzyme shows two major bands at 320,000 and 385,000 daltons, comigrating with certain ciliary and flagellar dynein polypeptides. The enzyme, given the name “egg dynein,” constitutes 2 to 4% of the total cell protein in the unfertilized egg and maintains this high value from fertilization through the late blastula stage. It appears to be equally distributed throughout the embryo at the 16-cell stage. Possible functions of egg dynein are discussed and models for dynein-microtubule mediated movements within the cytoplasm are presented.  相似文献   

18.
ATPase was purified from an alkalophilic Bacillus. The enzyme has a molecular weight of 410,000 and consists of five types of subunits of molecular weights of 60,000 (α), 58,000 (β), 34,000 (γ), 14,000 (δ), and 11,000 (?). The subunit structure is suggested to be α3β3γδ?. The enzyme is activated by Mg2+ and Ca2+. The pH optima of the enzyme with 0.1 and 2.0 mm Mg2+ are 9 and 6, and those with 1 and 10 mm Ca2+ are 8–9 and 7, respectively. Ca2+-ATPase hydrolyzes only ATP, whereas Mg2+-ATPase hydrolyzes GTP and, to a lesser extent, ATP. The values of V and Km of the enzyme with ATP in the presence of 10 mm Ca2+ or 0.6 mm Mg2+ at pH 7.2 are 17 or 0.5 units/mg protein and 1.2 or 0.3 mm, respectively. The enzyme with Mg2+ is appreciably activated by HCO?3. Relationship of the ATPase to the active transport system in the bacterium is suggested.  相似文献   

19.
Phosphoenolpyruvate carboxykinase (PEPCK) from M. expansa has been partially purified and its behaviour in a range of different assay conditions has been determined. Different PEPCK's were found in the cytosol and mitochondria. Some kinetic parameters for each are presented. Both enzymes are activated by Mn2+; cytosolic PEPCK is also activated by Mg2+. The enzymes have pH optima in the range 6·4–7·0. They do not differ with respect to their apparent affinities for inosine and guanosine diphosphates, but the latter allows higher maximal activity. Little activity is observed with adenosine diphosphate. Adenosine and inosine triphosphates exert weak inhibitory effects on the Mn2+ activated enzymes; a much strongsr inhibition is exerted on the cytosolic enzyme when activated by Mg2+. A number of non-nucleotide compounds were tested for possible inhibitory effects with no success. The forward and back reactions catalyzed by PEPCK proceed at similar rates, suggesting that the enzyme may be readily raversible in vivo.  相似文献   

20.
A DNA-dependent RNA polymerase has been isolated from Caldariella acidophila, a thermophilic bacterium living in acidic hot springs at temperatures ranging from 63 to 89 degrees C. The enzyme was purified 180-fold and is composed of five different subunits having the following molecular weights: a = 127000, b = 120000, c = 72000, d = 65000, and e = 38000. The enzyme is activated by Mn2+ and Mg2+ and exhibits optimal activity in the presence of 0.5 mM Mn2+. The activity depends on ionic strength, with a maximum at 0.25 M KCl, and exhibits a pH optimum at 7.8 in the presence of Tris-HCl buffer. The enzyme shows a high degree of thermophilicity, its temperature optimum being 80 degrees C in the in vitro assay. The thermophilicity of C. acidophila RNA polymerase allows studies on enzyme-template interactions to be performed in a temperature range where many templates are close to their Tm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号