首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ammonia volatilization from urea-treated soils was estimated under field and laboratory conditions. Acid-washed filter papers were hung in the air in a spruce stand treated with N and P fertilizers in a factorial design. In the laboratory, moss sods were incubated to quantify ammonia volatilization.Ammonia volatilization increased with the level of N applied and more ammonia was absorbed by filter papers at 0.6 m above the ground than those at 1.2 m. Maximum rates of ammonia volatilization in urea-treated plots were observed between the third and fourth day after fertilizer application and similar absorption patterns were observed in areas not treated with urea. It is, therefore, suggested that ammonia volatilized from urea-treated plots can move to untreated areas. Addition of P along with urea significantly reduced ammonia volatilization under field conditions.Laboratory experiments showed that addition of urea to moss sods increased the pH of the organic layer from about 3.6 to 8.8. Sphagnum moss sods volatilized more ammonia (about 1.7 per cent of the added material) than feather moss sods (about 0.8 per cent). At higher incubation temperatures, however, the rate of ammonia volatilization decreased in sphagnum moss sods but increased in feather moss sods.  相似文献   

2.
Summary Using diluted phosphoric acid- and glycerol-treated polyurethane plastic foam discs as static ammonia absorbers, the extent of ammonia loss from applied urea was determined on forest soil under field conditions. The investigation, which primarily involved a comparison of urea materials of two different pellet sizes (2–4 mg and 2060 mg urea per pellet, respectively), extended over a period of 28 days. The urea was applied to the soil surface at a rate of 200 kg N per hectare.It was found that the gaseous ammonia loss from the large-pellet urea (tablets) was markedly lower than that from the small-pellet urea during the first two weeks of exposure. On extending the observation period to four weeks, this difference in cumulative ammonia loss decreased successively. After 28 days' exposure, at a daily mean temperature of 13°C, the volatile loss amounted to 20 and 22 per cent, respectively. An addition of 5% (w/w) of a solution of concentrated orthophosphoric acid, or a fine-crystalline ortho-boric acid to the large-pellet urea, resulted in a reduction of the loss to half the value. The possibilities of controlling the ammonia loss from urea by combining the large pellet size with the addition of urease inhibitors are discussed. re]19721012  相似文献   

3.
土壤盐渍化对尿素与磷酸脲氨挥发的影响   总被引:5,自引:0,他引:5  
梁飞  田长彦 《生态学报》2011,31(14):3999-4006
氨挥发是肥料氮素损失的重要途径之一,肥料类型、土壤类型、肥料用量以及土壤全盐量均影响氨挥发损失率及挥发特征。本文采用通气法测定了磷酸脲和尿素两种肥料六个施肥量处理分别施入六个不同盐渍化程度(1.7、9.9、16.4、23.2、29.1、37.9 g/kg)的土壤后氨挥发累积状况和动力学特性,以及土壤氨挥发累积量与土壤电导值之间的相关性。结果表明:(1)在土壤总盐介于1.66 -37.9 g/kg的范围内,随着土壤含盐量增加,尿素与磷酸脲处理的氨挥发累积量显著增加;土壤含盐量对氨挥发速率有显著的促进作用。(2)各处理二次线性函数拟合的二项式系数a均为负值,表明:在不同盐渍化条件下肥料的挥发速率是随着时间增长而降低的;一次线性函数和Elovich 方程的斜率a随土壤含盐量增加而增大,表明:土壤盐渍化将加剧土壤的氨挥发速率。(3)土壤氨挥发累积量与电导值拟合结果符合logistic方程(︱R︱分别为0.9732,0.9815,0.965,0.9182,0.9817,0.9971︱R︱>r0.01=0.9172, n=6),氨挥发累积量随土壤电导值呈“S”型增长。  相似文献   

4.
不同包膜控释尿素对农田土壤氨挥发的影响   总被引:13,自引:0,他引:13  
卢艳艳  宋付朋 《生态学报》2011,31(23):7133-7140
为了探索包膜控释尿素土壤氨挥发损失规律特征和提高肥料氮素利用率,采用小麦玉米轮作田间试验,通过与普通尿素进行对比,运用土壤氨挥发原位测定方法——通气法系统研究了硫包膜和树脂包膜控释尿素的施用对小麦玉米轮作农田土壤氨挥发的影响.研究结果表明:在两种施氮量水平下(210 kg/hm2和300 kg/hm2),与普通尿素相比,硫包膜和树脂包膜控释尿素在小麦基肥期、小麦追肥期和玉米施肥期的施用均减少了土壤氨挥发的累积损失量,分别达35.1%-54.3%、59.6%-75.2%、65.6%-98.1%;有效降低了土壤氨挥发通量峰值且延迟其出现时间3-8 d,并能延缓土壤氨挥发主要阶段的时间分别为4-12 d、5-12 d.在小麦玉米轮作周年中,控释尿素土壤氨挥发累积损失量为28.39-43.35 kg/hm2,土壤氨挥发损失率为4.48%-5.63%,控释尿素时段土壤氨挥发通量比普通尿素降低了51.0%-70.8%;且树脂包膜控释尿素的施用降低小麦玉米轮作农田土壤氨挥发的效果优于硫包膜控释尿素.  相似文献   

5.
Hans Nommik 《Plant and Soil》1976,45(1):279-282
Summary Using a static system of ammonia sorbers, the extent of ammonia loss from surface-applied urea materials of different pellet sizes was studied under field conditions. Observations made at two different sites revealed that during the initial stage of exposure the gaseous ammonia loss was significantly retarded by increasing the pellet size. On extending the period of exposure to 20 and 30 days, respectively, this difference in the cumulative ammonia loss levelled out or even became negative. re]19750714  相似文献   

6.
7.
Available data on the isotopic ratio See PDF for Equation of ammonia (ra) and that of urea (ru) after a single feeding of glycine, aspartic acid, and ammonium citrate are analyzed. From this analysis the following conclusions are drawn. 1. The isotopic ratio See PDF for Equation of ammonia (ra) is always higher than that of urea (ru) in the initial period after a single feeding of isotopic glycine or aspartic acid, but the relation is reversed later. A similar relation probably holds after feeding isotopic ammonia. 2. It is pointed out that the ratio of average ra to average ru depends on the time interval for which urine is collected, on the schedule of feeding, and probably also on the amount taken at each feeding. When the amount fed and the feeding schedule are unknown, theoretical interpretation of the ratio of average ru to average ru is impossible. 3. At the point of maximum isotopic ratio of urea, it is very probably equal to the isotopic ratio of ammonia. A possible explanation is suggested.  相似文献   

8.
Summary In order to improve nitrogen recovery by rice, the effect of a urease inhibitor phenylphosphorodiamidate (PPD) on the efficiency of fertilizer urea was studied in laboratory and greenhouse. Addition of PPD to urea (5% w/w) delayed urea hydrolysis by 3 to 4 days and reduced ammonia volatilization from 45% (without PPD) to 8.5% (with PPD). Ammonia volatilization obeyed first order kinetics. Urea hydrolysis was sufficiently strongly inhibited to match the nitrification potential of the soil. N application to rice by three different modes showed that a delayed mode (4 splits) was superior to two conventional modes (3 splits) in nitrogen recovery and fertilizer efficiency since it met nitrogen requirement of plants at reproductive stage. In 2 out of 3 modes of application, there was a 14% increase (relative) in grain yields and dry matter, and 6.8% increase in N uptake efficiency on application of PPD along with urea. The results indicate that urease inhibitors like PPD can be effectively used to block urea hydrolysis, reduce ammonia volatilization losses and improve N use efficiency by rice.  相似文献   

9.
控失尿素对稻田氨挥发、氮素转运及利用效率的影响   总被引:7,自引:0,他引:7  
通过田间试验,以普通尿素分次施用处理(CU)为对照,研究了控失尿素分次施用(LCUS)和一次施用(LCUB)对水稻田土壤氨挥发特征、水稻氮素营养状况、稻谷产量及氮肥利用效率的影响. 结果表明: 普通尿素分次施用、控失尿素分次施用和控失尿素一次施用条件下,生育期氨挥发总量占总施氮量的比例分别为15.8%、13.4%和19.7%. 与普通尿素分次施用处理相比,控失尿素分次施用处理可降低土壤氨挥发损失量4.4 kg N·hm-2,降幅达18.0%,而控失尿素一次施用处理稻田土壤氨挥发总量却增加了7.2 kg N·hm-2,增幅达24.7%. 与普通尿素分次施用处理相比,控失尿素分次施用处理的水稻叶片叶绿素、籽粒和茎叶氮含量与氮素积累量、稻谷产量均有不同程度提高,氮肥利用率显著提高了7.6%,但氮素转运量、转运率和对穗氮贡献率均显著降低,而控失尿素一次施用处理的水稻叶片叶绿素、籽粒和茎叶氮含量与氮素积累量以及氮肥利用率均显著降低,氮素转运量、转运率、对穗氮贡献率以及稻谷产量无显著差异. 综上所述,控失尿素分次施用处理可以在保证稻谷稳产的同时,有效降低稻田土壤氨挥发损失,改善植株氮素营养状况,显著提高氮肥利用效率.  相似文献   

10.
生物炭对农田土壤氨挥发的影响机制研究进展   总被引:1,自引:0,他引:1  
降低土壤氨挥发量是农田生态系统中减少土壤氮素损失、提高氮肥利用率的关键途径之一。生物炭具有独特的理化性质,施入土壤后可改变土壤理化性状,影响土壤氮素循环,并对农田土壤中氨挥发产生重要的影响。本文首先介绍了稻田和旱田两种土地利用方式下农田氨挥发过程及其影响因素(气候条件、土壤环境、施肥管理等);其次,重点综述了生物炭对农田生态系统氨挥发影响的研究进展,并从物理吸附机制、气液平衡机制、生物化学过程调节机制等方面探讨了生物炭介入下农田土壤氨挥发的响应机制,认为土壤氨挥发减排的响应主要是基于生物炭表面含氧官能团对土壤NH4+和NH3的吸附作用及促进土壤硝化作用;而生物炭增加土壤氨挥发排放主要与生物炭提高土壤pH值和透气性、增强土壤有机氮矿化微生物活性有关。最后,对生物炭减少土壤氨挥发、提高氮肥利用率的研究方向进行了展望。  相似文献   

11.
Although the variation in natural 15N abundance in plants and soils is well characterized, mechanisms controlling N isotopic composition of organic matter are still poorly understood. The primary goal of this study was to examine the role of NH3 volatilization from ungulate urine patches in determining 15N abundance in grassland plants and soil in Yellowstone National Park. We additionally used isotopic measurements to explore the pathways that plants in urine patches take up N. Plant, soil, and volatilized NH315N were measured on grassland plots for 10 days following the addition of simulated urine. Simulated urine increased 15N of roots and soil and reduced 15N of shoots. Soil enrichment was due to the volatilization of isotopically light NH3. Acid-trapped NH315N increased from –28 (day 1) to –0.3 (day 10), and was lighter than the original urea-N added (1.2). A mass balance analysis of urea-derived N assimilated by plants indicated that most of the N taken up by plants was in the form of ammonium through roots. However, isotope data also showed that shoots directly absorbed 15N – depleted NH3-N that was volatilized from simulated urine patches. These results indicate that NH3 volatilization from urine patches enriches grassland soil with 15N and shoots are a sink for volatilized NH3, which likely leads to accelerated cycling of excreted N back to herbivores.  相似文献   

12.
The amounts of ammonia volatilized, following the application of cattle urine to 22 soils, were measured in the laboratory during an incubation period of 10 days. The urine contained 12.0 g N dm-3 and was applied to small columns of soil at a rate equivalent to 26.5 g N m-2. The soils were from fields of both grassland and arable cultivation and varied widely in properties. Ammonia volatilization ranged from 6.8 to 41.3% of the total urinary N, with a mean value of 26.4%. The soil property most closely related to the extent of volatilization was cation exchange capacity (CEC), and this was so whether all 22 soils were considered together or whether the 14 grassland and 8 arable soils were considered separately. In general, the higher the CEC the less the amount of ammonia volatilized. However, for a given value of CEC, volatilization tended to be greater from a grassland than from an arable soil. The pH of a soil/urine mixture measured after 24 hours was also quite closely correlated with the amount of ammonia volatilized, but the initial pH and titratable acidity of the soil were poorly correlated with ammonia volatilization. ei]H Marschner ei]H Lambers  相似文献   

13.
Ammonia volatilization is the major pathway for mineral nitrogen loss in the calcareous soils of the Chinese loess plateau, with maximum losses reaching 50% of the fertilizer-N applied. A volatilization-diffusion experiment was carried out in the laboratory using a forced-draft system and soil columns of 15.5 cm depth. Urea was surface applied at rates of 210 kg N ha-1 to a soil with 10% CaCO3 and a pH of 7.7. The amount of ammonia volatilized as well as the concentration profiles of ammoniacal-nitrogen and soil pH in the upper 50 mm of the soil columns after 4, 7 and 10 days were measured and subsequently modelled. The mechanistic model of Rachhpal-Singh and Nye, originally developed for neutral, non-calcareous soils, was modified to include the pH-buffering action of the soil carbonates. Model parameters were independently determined or taken from the literature. Measured and predicted cumulative NH3 losses agreed very well in the first 10 days following fertilizer application. However, in contrast to the simulations, NH3-volatilization was still proceeding in the experiment even after 13 days, with cumulative losses reaching 60% of the applied N. In addition to the high initial soil pH, the low bulk density and high volumetric air content of the soil columns used for the experiment proved decisive for the high rates of ammonia volatilization, provoking a strong increase in the amount of ammoniacal-N diffusing towards the soil surface as gaseous NH3. The simulations showed that due to the high soil pH, the buffering action of the soil carbonates played a comparatively smaller role.  相似文献   

14.
In the recent past considerable attention is paid to minimize dependence on purchased inputs such as inorganic nitrogen fertilizer. Green manure in the form of flood-tolerant, stem-nodulatingSesbania rostrata andAeschynomene afraspera is an alternative N source for rice, which may also increase N use efficiency. Therefore research was conducted to determine the fate of N applied to lowland rice (Oryza sativa L.) in the form ofSesbania rostrata andAeschynomene afraspera green manure and urea in two field experiments using15N labeled materials.15N in the soil and rice plant was determined, and15N balances established. Apparent N recoveries were determined by non-tracer method. 15N recoveries averaged 90 and 65% of N applied for green manure and urea treatments, respectively. High partial pressures of NH3 in the floodwater, and high pH probably resulted from urea application and favoured losses of N from the urea treatment. Results show that green manure N can supply a substantial proportion of the N requirements of lowland rice. Nitrogen released fromSesbania rostrata andAeschynomene afraspera green manure was in synchrony with the demand of the rice plant. The effect of combined application of green manure and urea on N losses from urea fertilizer were also investigated. Green manure reduced the N losses from15N labeled urea possibly due to a reduction in pH of the floodwater. Positive added N interactions (ANIs) were observed. At harvest, an average of 45 and 25% of N applied remained in the soil for green manure and urea, respectively.Contribution from IRRI, Los Baños, Philippines and Justus-Liebig-University, Giessen, GermanyContribution from IRRI, Los Baños, Philippines and Justus-Liebig-University, Giessen, Germany  相似文献   

15.
以持续9年施用不同缓/控释尿素的水田棕壤为试验对象,以普通大颗粒尿素为对照,研究了持续施用不同缓/控释尿素条件下水田土壤NH3挥发与N2O排放特征.结果表明: 与普通大颗粒尿素(U)相比,除1% 3,4-二甲基吡唑磷酸盐(DMPP)+U处理 NH3挥发增加了25.8%外,其他缓/控释尿素肥料处理对NH3有明显的减排效果.树脂包膜尿素(PCU)对NH3减排效果最明显,为73.4%,硫包膜尿素(SCU)为72.2%,0.5% N-丁基硫代磷酰三胺(NBPT)+1% DMPP+U为71.9%,1% 氢醌(HQ)+3% 双氰胺(DCD)+U为46.9%,0.5% NBPT+U为43.2%,1% HQ+U为40.2%,3% DCD+U为25.5%, 1% DMPP均与施用普通大颗粒尿素差异显著;所有缓/控释尿素处理与对照相比均可显著减少N2O排放.1% DMPP+U对N2O减排效果最明显,为74.9%,PCU为62.1%,1% HQ+3% DCD+U为54.7%,0.5% NBPT+1% DMPP+U为42.2%,3% DCD+U为35.9%,1% HQ+U为28.9%,0.5% NBPT+U为17.7%,SCU为14.5%,均与施用普通大颗粒尿素差异显著.比较0.5% NBPT+1% DMPP+U、SCU、PCU对NH3和N2O减排的综合效果,3种肥料作用相近,且均明显优于其他处理,但包膜材料的成本较抑制剂高数倍.因此,同时添加脲酶和硝化抑制剂的缓释尿素是减少水田氮素损失及环境污染的首选氮肥.  相似文献   

16.
Model of ammonia volatilization from calcareous soils   总被引:2,自引:0,他引:2  
A quantitative model of ammonia volatilization from the calcareous soil uppermost 1-cm layer was developed and tested. The model accounts for the following processes: ammonium-ammonia equilibration in the soil solution, cation exchange between calcium and ammonium which results in ammonium distribution between soil liquid and solid phases, nitrification of dissolved ammonium, distribution of ammonia between liquid and gaseous phases and diffusion of gaseous ammonia in the soil air. The combined effect of various characteristics such as soil pH, cation exchange capacity, water capacity and nitrification rate on ammonia losses from various soil types have been studied. The model was validated against experimental results of ammonia losses from different soils for its use as a predicting tool. The model shows that most of ammonia losses can be explained by the interactive effect of high soil pH and low cation exchange capacity. Computations show increased ammonia volatilization with decreasing soil water capacity. Increasing fertilizer application rate has a small effect on percentage of ammonia losses. Increased nitrification rate and shorter “lag” period of nitrification reduce ammonia losses considerably. Good agreement was obtained between model calculations and experimental results of ammonia volatilization from 13 soils.  相似文献   

17.
施氮水平对水稻生育后期地上部氨挥发的影响   总被引:8,自引:0,他引:8  
采用温室盆栽模拟试验,研究了不同施氮水平下水稻开花后地上部氨挥发及其影响因素.结果表明:不同品种水稻开花后地上部日氨挥发量和开花至成熟期的氨挥发总量均随施氮量的增加而增加,且不同施氮水平间存在一定差异.花期和成熟期水稻地上部氨挥发量(y)与功能叶片谷氨酰胺合成酶(GS)活性(x1)呈显著负相关,而与功能叶片质外体NH4+浓度(x2)呈显著正相关:y=-0.37846x1+0.41821x2+0.04925(R2=0.9471,n=16).水稻氮素收获指数(x1)和氮肥生理利用率(x2)均与地上部氨挥发总量(y)呈显著负相关:y=-0.02117x1+0.75186(R2=0.8426,n=8)和y=-1.10386x2+35.52676(R2=0.8489,n=8),说明高氮水平下水稻氮肥利用率的下降与水稻地上部氨挥发量的增加有关.  相似文献   

18.
新疆灰漠土区不同肥料配比土壤氨挥发原位监测   总被引:3,自引:0,他引:3  
在17a的新疆国家灰漠土土壤肥力与肥料效益长期定位试验区,采用通气法对春小麦种植体系8种处理,即(1)对照(种植、不施肥,CK)、(2)施氮肥(N)、(3)施氮磷肥(NP)、(4)施氮钾肥(NK)、(5)施氮磷钾肥(NPK)、(6)施氮磷钾肥+有机肥增量(NPKM1)、(7)施氮磷钾化肥+有机肥常量(NPKM2)、(8)施氮磷钾化肥+秸秆还田(NPKS)的氨挥发损失与不同肥料配比、长期不同施肥土壤特性变化之间关系进行研究.结果表明:(1)在当地春小麦种植典型施肥模式,即"基肥撒施后机械翻耕,追肥撒施后灌水"下,在施氮量为84.97~241.5 kg · hm-2的条件下,不同处理基肥氨挥发累积量为0.194~2.236 kg N · hm-2之间;追肥氨挥发累积量在0.078~0.210 kg N · hm-2之间,远低于基肥氨挥发量;基肥和追肥氨挥发损失氮素之和占总施氮量的0.39%~1.23%.(2)相同施氮量241.5 kg · hm-2的N、NP、NK、NPK 4个处理,氨挥发累积量分别为1.017、0.944、1.988、2.437 kg N · hm-2,氨挥发量与不同处理土壤速效钾含量相关性达显著水平(r=0.951, P<0.05,n=4).(3)施氮量分别为151.8、84.9、216.7 kg · hm-2有机肥处理NPKM1、NPKM2、NPKS的氨挥发累积量分别为1.404、1.041、1.583 kg N · hm-2,氨挥发量与氮肥使用量呈显著正相关(r=0.581,P<0.05,n=18).以上结果表明,氨挥发不是新疆灰漠土长期定位试验春小麦体系氮肥损失的主要途径;不同肥料配比和长期不同肥料配比造成土壤特性的变化是7种施氮肥处理氨挥发差异的主要原因.  相似文献   

19.
Summary Nitrification and ammonia volatilisation losses from urea and dicyandiamide (DCD)-treated urea were studied in a sandy loam soil. Laboratory experiments indicated that 20 ppm (of soil) DCD effectively inhibited nitrification of urea over sixty days. If the urea was treated with DCD (20 ppm), ammonia emission from the soil was extended over 105 days; with urea alone, it was negligible after 15 days. A field study indicated that DCD treatment increased volatilisation losses of ammonia tremondously if urea was applied to the soil surface; these losses were minimised if the urea was placed at 5 cm depth. It would seem that nitrification inhibitors must be combined with a placement technique.  相似文献   

20.
不同施肥方式对土壤氨挥发和氧化亚氮排放的影响   总被引:43,自引:0,他引:43  
采用密闭室间歇通气法和静态箱法对不同施肥方式(撒施后翻耕、条施后覆土、撒施后灌水)下的土壤氨挥发和氧化亚氮排放进行了研究.结果表明:不同施肥方式显著影响了土壤中的氨挥发和氧化亚氮排放.撒施后灌水处理明显促进了氨挥发,其最大氨挥发速率明显高于其它处理,氨挥发累计达2.465 kg N·hm-2.不同施肥方式下氧化亚氮排放通量存在显著差异(P《0.05),且峰值出现时间也不同.施肥后第2天,撒施后灌水处理达到峰值,为193.66 μg·m-2·h-1,而条施后覆土处理在施肥后第5天才出现峰值,为51.13 μg·m-2·h-1,且其排放峰值在3种施肥方式中最低.撒施后灌水处理的氧化亚氮累积净排放量达121.55 g N·hm-2,显著大于撒施后翻耕和条施后覆土处理.撒施后翻耕和条施后覆土处理能有效抑制氨挥发和氧化亚氮排放损失,是较为合理的施肥方式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号