首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. MÖNKKONEN  P. HELLE  D. WELSH 《Ibis》1992,134(S1):7-13
In this paper we compare ecological attributes of tropical migrant passerines from the Nearctic and western Palaearctic, focusing particularly on habitat association patterns during both breeding and wintering seasons. Three regions were compared: Europe, western and eastern North America. Breeding bird census data from 32 studies (each including at least four stages of forest succession) were used to assess the association patterns of breeding habitats among tropical migrants. For each species we calculated an index of habitat diversity and habitat preference.
Tropical migrants preferred earlier successional stages than other birds in Europe. The opposite was true in eastern North America. In eastern North America, tropical migrants tended to be associated with a smaller range of serai stages than other passerine species. In their winter quarters, Palaearctic migrants live primarily in open habitats, such as savannas, whereas eastern Nearctic migrants make more frequent use of evergreen forests. Migrants from western North America show the greatest match between breeding and wintering habitats.
We relate the results to the taxonomy and probable history of contemporary avifaunas and vegetation formations of the Old and New World. Taxonomically, tropical migrants from different parts of the Holarctic are less closely related to each other than residents and short-distance migrants. Tropical and temperate avifaunas are more closely related to each other in the New World than in the Old World. Conservation implications of the between-continent differences are briefly discussed.  相似文献   

2.
Nucleotide sequence diversity at mitochondrial protein-coding loci from 72 species of birds from different geographical regions was analysed in order to test the hypothesis that temperate zone species show population genetic effects of past glaciation. Temperate zone species showed reduced nucleotide diversity in comparison to tropical mainland species, suggesting that the latter have long-term effective population sizes due to population bottleneck effects during the most recent glaciation. This hypothesis was further supported by evidence of an unusually high estimated rate of population growth in species breeding in North America and wintering in the New World tropics (Nearctic migrants), consistent with population expansion after a bottleneck. Nearctic migrants also showed evidence of an abundance of rare nonsynonymous (amino acid-altering) polymorphisms, a pattern suggesting that slightly deleterious polymorphisms drifted to high frequencies during a bottleneck and are now being eliminated by selection. Because the shape of the North American land mass limited the area available for refugia during glaciation, the bottleneck effects are predicted to have been particularly strong in Nearctic migrants, and this prediction was supported. The reduced genetic diversity of Nearctic migrants provides an additional basis for concern for the survival of these species, which are threatened by loss of habitat in the winter range and by introduced disease.  相似文献   

3.
Dispersal limitation and long-term persistence are known to delay plant species’ responses to habitat fragmentation, but it is still unclear to what extent landscape history may explain the distribution of dispersal traits in present-day plant communities. We used quantitative data on long-distance seed dispersal potential by wind and grazing cattle (epi- and endozoochory), and on persistence (adult plant longevity and seed bank persistence) to quantify the linkages between dispersal and persistence traits in grassland plant communities and current and past landscape configurations. The long-distance dispersal potential of present-day communities was positively associated with the amounts of grassland in the historical (1835, 1938) landscape, and with a long continuity of grazing management—but was not associated with the properties of the current landscape. The study emphasises the role of history as a determinant of the dispersal potential of present-day grassland plant communities. The importance of long-distance dispersal processes has declined in the increasingly fragmented modern landscape, and long-term persistent species are expected to play a more dominant role in grassland communities in the future. However, even within highly fragmented landscapes, long-distance dispersed species may persist locally—delaying the repayment of the extinction debt.  相似文献   

4.
This paper outlines population trends (with confidence intervals) for 49 species in woodland habitats in Britain as monitored by the British Trust for Ornithology's (BTO) Common Bird Census (CBC) between 1967 and 1999. Additionally, the possible causes of these population trends are investigated by relating the ecological characteristics of species to the degree of population change they have undergone over different time periods. Over the whole period, 17 species showed significant decreases in abundance and 12 species showed significant increases. Whilst population trajectories were diverse, long-distance migrants showed more negative trends than other species and the timing of the changes in their populations was related to their wintering latitude, suggesting that these species may be suffering from environmental changes in the non-breeding season. There was also support for habitat specializations being related to population changes, with species classified as scrub and understorey specialists declining on average, but this was only evident across the entire study period. Additionally, species eating seeds in summer declined and those eating vegetation and making use of the agricultural landscape matrix increased. Therefore wide-scale factors such as landscape-scale processes or processes operating outside of Britain appear to be important in addition to local habitat change, especially for long-distance migrants.  相似文献   

5.
Sam T. Ivande  Will Cresswell 《Ibis》2016,158(3):496-505
The specificity of an animal's habitat requirements will determine its ability to deal with anthropogenic climate and habitat change. Migratory birds are thought to be particularly vulnerable to such change, but theory predicts that they should be largely generalists. This prediction was tested with the aim of assessing whether migratory Palaearctic‐breeding birds wintering in the savannah biome of Africa are more or less generalist in their habitat use compared with taxonomically and ecologically similar Afro‐tropical resident species. The degree of specialization of these species groups to certain habitat characteristics was assessed and compared by calculating the relative occurrence of the species along habitat gradients, where wide occurrence indicates generalism and narrow occurrence indicates specialism. Palaearctic migrants as a group could not clearly be distinguished as generalists relative to Afro‐tropical residents with respect to habitat attributes. The only indication of greater flexibility in Palaearctic migrants was a significant tendency to use habitats over a wider latitudinal range. The results suggest that migrants are generalists, but not necessarily more generalist than taxonomically similar resident species that also occur over a wide range of habitat types within the savannah biome. The availability of specific habitat requirements on the wintering grounds in Africa is therefore unlikely to be a primary limiting factor for many Afro‐Palaearctic migratory bird species.  相似文献   

6.
Annual migrations of birds profoundly influence terrestrial communities. However, few empirical studies examine why birds migrate, in part due to the difficulty of testing causal hypotheses in long-distance migration systems. Short-distance altitudinal migrations provide relatively tractable systems in which to test explanations for migration. Many past studies explain tropical altitudinal migration as a response to spatial and temporal variation in fruit availability. Yet this hypothesis fails to explain why some coexisting, closely-related frugivorous birds remain resident year-round. We take a mechanistic approach by proposing and evaluating two hypotheses (one based on competitive exclusion and the other based on differences in dietary specialization) to explain why some, but not all, tropical frugivores migrate. We tested predictions of these hypotheses by comparing diets, fruit preferences, and the relationships between diet and preference in closely-related pairs of migrant and resident species. Fecal samples and experimental choice trials revealed that sympatric migrants and residents differed in both their diets and fruit preferences. Migrants consumed a greater diversity of fruits and fewer arthropods than did their resident counterparts. Migrants also tended to have slightly stronger fruit preferences than residents. Most critically, diets of migrants more closely matched their preferences than did the diets of residents. These results suggest that migrants may be competitively superior foragers for fruit compared to residents (rather than vice versa), implying that current competitive interactions are unlikely to explain variation in migratory behavior among coexisting frugivores. We found some support for the dietary specialization hypothesis, propose refinements to the mechanism underlying this hypothesis, and discuss how dietary specialization might ultimately reflect past interspecific competition. We recommend that future studies quantify variation in nutritional content of tropical fruits, and determine whether frugivory is a consequence or a cause of migratory behaviour.  相似文献   

7.
We analyze the influence of historical and ecological factors on the diversity and composition of communities of copronecrophagous beetles associated with conserved and disturbed habitats on two mountains of the Mexican Transition Zone: one mountain of xeric (Las Derrumbadas) and the other of temperate (El Pinal) climate. We collected a total of 1113 beetles of 14 species. While abundance was similar between mountains, the number of species found on the temperate mountain (589 individuals: 11 species) was higher than on the xeric mountain (524 individuals: 5 species). On the temperate mountain, the disturbed habitat was approximately twice as diverse as the conserved habitat, while the opposite pattern was observed on the xeric mountain. Analysis of species turnover between mountains indicated the presence of two relatively different communities and the magnitude of the species turnover related to habitat disturbance depended on the type of mountain, having a higher turnover between habitat types in the temperate mountain. The xeric mountain was dominated by species belonging to the Paleoamerican Plateau distribution pattern, while the Paleoamerican Montane pattern dominated on the temperate mountain, whose species increased their abundance in disturbed habitats together with species of Nearctic affinity. Our results suggest a negative effect of habitat disturbance on the xeric mountain. While on the temperate mountain, beetle diversity seems to increase with disturbance. These results reiterate the need to consider regional-scale historical and ecological processes in order to understand the effects of disturbance and permit the establishment of conservation strategies to adequately protect the organisms, as well as the functions they provide for natural and anthropic ecosystems alike.  相似文献   

8.
The damselfly genus Enallagma originated in the Nearctic, and two Nearctic lineages recently underwent radiations partly associated with multiple independent habitat shifts from lakes dominated by fish predators into lakes dominated by dragonfly predators. A previous molecular study of four Palearctic morphospecies and all representative Nearctic species identified the presence of two cryptic species sets, with each set having Palearctic and Nearctic representatives. However, the cryptic species within each set are not sibling species. Here, we present quantitative data on ecologically important larval morphologies and behaviors involved in predator avoidance and on adult male morphological structures involved in mate recognition to quantify the phenotypic relationships among these cryptic species sets. For the adult stage, our data indicate strong parallel evolution of the structures involved in specific mate recognition-the male cerci. For the larval stage, morphometric analyses show that the Palearctic species evolved a nearly identical morphology to the sibling-clade members in the Nearctic that live in waters where dragonflies are the top predators. This implicates the importance of dragonfly predation in the history of the Palearctic clade. Behavioral analyses suggest population differentiation in response to the actual predator environment in the Palearctic clade, consistent with the species differentiation seen in the Nearctic. Our results suggest parallel evolution of adult traits that influence specific mate choice and larval traits that influence ecological performance underlie the striking similarity of Enallagma species across continents. This concurrent parallel evolution in both stages of a complex life cycle, especially when both stages do not share the same selective environment, may be a very unusual mechanism generating cryptic species.  相似文献   

9.
Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life‐history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life‐history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life‐history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life‐history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large‐scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.  相似文献   

10.
One consequence of climate change is an increasing mismatch between timing of food requirements and food availability. Such a mismatch is primarily expected in avian long-distance migrants because of their complex annual cycle, and in habitats with a seasonal food peak. Here we show that insectivorous long-distance migrant species in The Netherlands declined strongly (1984–2004) in forests, a habitat characterized by a short spring food peak, but that they did not decline in less seasonal marshes. Also, within generalist long-distance migrant species, populations declined more strongly in forests than in marshes. Forest-inhabiting migrant species arriving latest in spring declined most sharply, probably because their mismatch with the peak in food supply is greatest. Residents and short-distance migrants had non-declining populations in both habitats, suggesting that habitat quality did not deteriorate. Habitat-related differences in trends were most probably caused by climate change because at a European scale, long-distance migrants in forests declined more severely in western Europe, where springs have become considerably warmer, when compared with northern Europe, where temperatures during spring arrival and breeding have increased less. Our results suggest that trophic mismatches may have become a major cause for population declines in long-distance migrants in highly seasonal habitats.  相似文献   

11.
Niche‐driven effects on demographic processes generated in response to habitat heterogeneity partly shape local distributions of species. Thus, tree distributions are commonly studied in relation to habitat conditions to understand how niche differentiation contributes to species coexistence in forest communities. Many such studies implicitly assume that local abundance reflects habitat suitability, and that abundance is relatively stable over time. We compared models based on abundance with those based on demographic performance for making inferences about habitat association for 287 tree species from three large dynamic plots located in tropical, subtropical and temperate forests. The correlation between the predictions of the abundance‐based models and the demography‐based models varied widely, with correlation coefficients ranging nearly from ?1 to 1.This suggests that the two types of models capture different information about species–habitat associations. Demography‐based models evaluate habitat quality by focusing on population processes and thus should be preferred for understanding responses of tree species to habitat conditions, especially when habitat conditions are changing and species–habitat interactions cannot be considered to be at equilibrium.  相似文献   

12.
Recent assessments of biodiversity in tropical agroecosystems have revealed surprisingly high functional and taxonomic diversity in systems with low management intensity. This biodiversity is the product of community assembly. Because agroecosystems are novel ecosystems and occur in landscape mosaics, the assembly processes generating communities in agroecosystems are poorly resolved. Broadly, two models have been proposed to explain landscape assembly: trade‐offs in species performance across habitats (species sorting) and source‐sink dynamics between habitats of differential quality (mass effects). These models are largely untested in tropical agroecosystems. We utilize an extensive data set on a tropical twig‐nesting ant community from five microhabitat types in a shaded coffee agroecosystem to test for species sorting, mass effects, or a mixed model. To test among these models, we used community similarity and a variance decomposition on a focal microhabitat (a moderate‐shade coffee farm) to partition community variance into spatial and environmental components. To identify the source habitat for mass effects and assess their strength, we measured dispersing alates (winged reproductives), artificial nests, and colony and nest size in shade trees and coffee. We found significant environmental and spatial signal and evidence for both species sorting and mass effects. We find sorting occurs among common species, but that mass effects are prevalent among rare species and likely originate in the shade trees. Our results indicate that both metacommunity models occur in tropical landscape mosaics, but they may not apply equally to all species in communities, habitat gradients, or timescales.  相似文献   

13.
The question of whether ecological assemblages are structured by stochastic and deterministic (e.g. interspecific competition) processes is controversial, but it is difficult to design sampling regimes and experiments that can dissect the relative importance of stochastic and deterministic processes in natural assemblages. Using null models, we tested communities of arthropod decomposers in tropical epiphytes for patterns of species co-occurrence, while controlling for habitat gradients, seasonal variations and ecological succession. When environmental conditions were controlled, our analysis showed that the communities were structured stochastically. However, analysing mixed sets of communities that were deliberately created either from two distinct heights or two successional stages revealed that communities were structured deterministically. These results confirm that habitat gradients and dispersal/competition trade-offs are capable of generating non-random patterns within decomposer arthropod communities, but reveal that when such effects are accounted for, species co-occurrence is fundamentally random.  相似文献   

14.
Abstract.  1. Patterns of simuliid species richness were examined over a variety of scales at 532 stream sites in the Nearctic (394) and Neotropical (138) regions. In Nearctic streams, species richness of immature blackflies both within and across ecoregions and over two seasons was examined. Stream variables at each site included seston, width, depth, velocity, discharge, conductivity, pH, dissolved oxygen, water temperature, dominant streambed-particle size, canopy cover, and riparian vegetation. These variables were subjected to a principal component analysis and derived principal components were related back to richness, using regression analysis. At the level of the stream reach, richness was not highly correlated with single-point measurements of stream conditions.
2. Using data from both Nearctic and Neotropical sites, the effect of regional richness on local richness was examined. As regional richness increased, local diversity reached an asymptote in which further increases in regional richness were not matched by increases in local richness. Hence, simuliid communities are best described as saturated (type II) communities, consistent with the current view of lotic communities as non-equilibrium systems.
3. The well-established pattern of greater species richness in tropical regions was not observed in this study. To the contrary, blackfly richness is higher in temperate streams than in tropical streams at both local and regional scales.  相似文献   

15.
Habitat selection and coexistence of migrants and Afrotropical residents   总被引:1,自引:0,他引:1  
BERND LEISLER 《Ibis》1992,134(S1):77-82
In this paper I discuss factors that influence the habitat choice of small migrant birds on their Afrotropical wintering grounds and the ecological isolation of migrants and residents. The main characteristic of migrants is the use of resources which are sporadic in space and time. The majority of migrants occur in seasonal savannas and open woodland, mostly using temporarily and locally abundant food sources generally unused by residents. Migrants are more eurytopic and exploit more open parts of the habitats than ecologically similar tropical species. In some guilds, the foraging speed and rate of migrants is higher and they use their wings more often in comparison to residents. There is weak evidence that niche shifts of residents are induced by the arrival of migrants. Overt interspecific interactions seem to be infrequent, except in a guild of ground-feeding birds which rely on a rather predictable but poor food supply. In this guild, residents, but not intra-African migrants, dominated Palaearctic migrants in aggressive encounters irrespective of body-size. In contrast to this, dominance was size-dependent among wintering Palaearctic migrants.  相似文献   

16.
Migrants are generally assumed to minimize their overall migration time by adjusting their departure fuel loads (DFL) in relation to anticipated and experienced fuel deposition rates (FDRs). We utilized a 21‐yr long migration banding station dataset to examine the relationship between FDR and DFL during spring migration in six Nearctic‐Neotropical migratory songbird species during stopover along the northern coast of the Gulf of Mexico (GOM) following trans‐gulf flight. Estimates of fuel stores, stopover durations, and FDRs from our long term migration data set were combined to determine DFL. We expected and found that migrants across all six species adjust their DFL to the rate at which they deposit fuel reserves. This robust finding suggests that songbird migrants are sensitive to time constraints during spring passage presumably to fine‐tune their stopover schedule in relation to experienced and anticipated habitat quality. Two of the species studied showed an effect of age on the FDR–DFL relationship: one was consistent with the expectation that older birds would be less sensitive to changes in FDR, while the second was contrary to our expectations and likely suggesting an age‐dependent response to habitat quality. We found sex‐dependent differences consistent with male DFL being more sensitive to FDR in only two of six species studied, and argue that both males and females are time constrained during spring passage in relation to arrival at breeding destinations. The positive relationship between FDR and DFL among all species and for age and sex groups in some species reflects a migration strategy sensitive to time.  相似文献   

17.
Assemblages of closely related organisms are generated on axes of deep time diversification, biogeographic processes related to dispersal and habitat filtering, and competition. Using models that account for phylogeny, ecology, and traits, we examine how the interaction among biogeography, habitat filtering, and trait convergence influences community assemblage in Nearctic snakes. With 122 community surveys, environmental niche, trait data including size, diet, parity and habitat preference, and a nearly complete phylogeny of snakes from the United States, we ask 1) do phylogenetic species variability (PSV) and traits change in predictable and correlated ways given ecology and geographic distance, 2) are the measured traits variable within and across communities and how is this related to PSV at local scales, and 3) is there evidence of habitat filtering or trait divergence? Following a general trend of western to eastern North American origin and dispersal of major groups, we similarly show a significant decrease in PSV in this direction but unexpectedly with stable trait variance, showing that traits and phylogenetic variability are disconnected at the community level. We also demonstrate that trait variability and not PSV dominates local communities. Finally, regardless of phylogeny, we show that certain traits, such as reproductive mode (parity) frequency, change within communities in response to steep ecological gradients.  相似文献   

18.
Sara Henningsson  Thomas Alerstam 《Oikos》2008,117(11):1619-1628
Several different factors may determine where species range limits are located within regions of otherwise continuously available habitat and suitable climate. Within the Arctic tundra biome many bird species are migratory and their breeding distributions are affected by migration routes that are in turn limited by factors such as suitable winter habitat, migratory stopover sites, geographical barriers and historical routes of colonization. We identified longitudinal zones in the circumpolar Arctic of pronounced changes in the avian species composition (high species spatial turnover; ‘species divides’). We tested for the association between migratory status and the geographical location and numbers of such species divides for species with non‐breeding habitats mainly within terrestrial, pelagic and coastal ecosystems. Our results demonstrate that migration is of profound importance for both the number and locations of species divides in the Arctic. Long‐distance migration is associated with a large number of divides among terrestrial and coastal arctic birds but with a reduced number of divides among pelagic birds. We suggest that long‐distance migration permits pelagic but not terrestrial and coastal birds to colonize large winter ranges, which in turn causes expansion of breeding ranges, with more homogenous communities and reduction of species divides as consequences, among the long‐distance migrants of pelagic but not of terrestrial and coastal birds. Furthermore, the divides among long‐distance migrants are situated in two main regions, the Beringia and Greenland zones, while divides among short‐distance migrants are more evenly spaced throughout the circumpolar Arctic. The Beringia and Greenland divides result largely from inter‐continental colonization of new breeding ranges but retainment of original winter quarters in a process of evolution through extension of migration routes, leading to aggregated divides in the meeting zones of major global flyways.  相似文献   

19.
Much of the remaining “forest” vegetation in eastern Chiapas, Mexico is managed for coffee production. In this region coffee is grown under either the canopy of natural forest or under a planted canopy dominated by Inga spp. Despite the large differences in diversity of dominant plant species, both planted and rustic shade coffee plantations support a high overall diversity of bird species; we recorded approximately 105 species in each plantation type on fixed radius point counts. We accumulated a combined species list of 180 species on repeatedly surveyed transects through both coffee plantation types. These values are exceeded regionally only by moist tropical forest. Of the habitats surveyed, shade coffee was second only to acacia groves in the abundance and diversity of Nearctic migrants. The two plantation types have similar bird species lists and both are similar in composition to the dominant woodland—mixed pine-oak. Both types of shade coffee plantation habitats differ from other local habitats in supporting highly seasonal bird populations. Survey numbers almost double during the dry season—an increase that is found in omnivorous migrants and omnivorous, frugivorous, and nectarivorous resident species. Particularly large influxes were found for Tennessee warblers (Vermivora peregrina) and northern orioles (Icterus galbula) in Inga dominated plantations.  相似文献   

20.
Recent attempts to understand the processes governing community assembly have increasingly focused on patterns of phylogenetic relatedness and functional similarity among co-existing species. Considerations of the species pool, the number and identity of functional traits and the metrics used to identify patterns have come under scrutiny as possible influences on the detection of non-random patterns. Most mechanistic explanations of community assembly based on functional and phylogenetic approaches rely on deterministic explanations, while ignoring the role of stochastic processes and historical contingency, despite the prominent historical role of both types of explanations of species coexistence. We evaluated the phylogenetic and functional structure of 20 temperate forest bird assemblages in northeastern North America. We compared three approaches for characterizing the functional structure of assemblages. Regardless of approach, assemblages were generally no different than expected by chance. In contrast, phylogenetic structures of bird assemblages were overdispersed, clumped or consistent with random assembly depending on the site. Nonetheless, we found little evidence for differences in phylogenetic structure arising as a consequence of the identity of the species pool. We identified a strong relationship between the proportion of residents and phylogenetic relatedness that was unrelated to the species richness of assemblages. Our results suggest that different assembly mechanisms may structure resident and migratory subsets of temperate breeding bird communities. Resident assemblages are likely structured by interspecific interactions and habitat filtering prior to arrival of migrants. In contrast, the composition of migrant assemblages may be a consequence of priority effects in which the presence and abundance of residents and earliest arriving species affect the ability of subsequent migrants to colonize sites. This phenomenon enhances the likelihood of multiple alternative community structures in similar environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号