首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene set analysis methods are popular tools for identifying differentially expressed gene sets in microarray data. Most existing methods use a permutation test to assess significance for each gene set. The permutation test's assumption of exchangeable samples is often not satisfied for time‐series data and complex experimental designs, and in addition it requires a certain number of samples to compute p‐values accurately. The method presented here uses a rotation test rather than a permutation test to assess significance. The rotation test can compute accurate p‐values also for very small sample sizes. The method can handle complex designs and is particularly suited for longitudinal microarray data where the samples may have complex correlation structures. Dependencies between genes, modeled with the use of gene networks, are incorporated in the estimation of correlations between samples. In addition, the method can test for both gene sets that are differentially expressed and gene sets that show strong time trends. We show on simulated longitudinal data that the ability to identify important gene sets may be improved by taking the correlation structure between samples into account. Applied to real data, the method identifies both gene sets with constant expression and gene sets with strong time trends.  相似文献   

2.
Directed indices for exploring gene expression data   总被引:1,自引:0,他引:1  
MOTIVATION: Large expression studies with clinical outcome data are becoming available for analysis. An important goal is to identify genes or clusters of genes where expression is related to patient outcome. While clustering methods are useful data exploration tools, they do not directly allow one to relate the expression data to clinical outcome. Alternatively, methods which rank genes based on their univariate significance do not incorporate gene function or relationships to genes that have been previously identified. In addition, after sifting through potentially thousands of genes, summary estimates (e.g. regression coefficients or error rates) algorithms should address the potentially large bias introduced by gene selection. RESULTS: We developed a gene index technique that generalizes methods that rank genes by their univariate associations to patient outcome. Genes are ordered based on simultaneously linking their expression both to patient outcome and to a specific gene of interest. The technique can also be used to suggest profiles of gene expression related to patient outcome. A cross-validation method is shown to be important for reducing bias due to adaptive gene selection. The methods are illustrated on a recently collected gene expression data set based on 160 patients with diffuse large cell lymphoma (DLCL).  相似文献   

3.
Competitive gene set tests are commonly used in molecular pathway analysis to test for enrichment of a particular gene annotation category amongst the differential expression results from a microarray experiment. Existing gene set tests that rely on gene permutation are shown here to be extremely sensitive to inter-gene correlation. Several data sets are analyzed to show that inter-gene correlation is non-ignorable even for experiments on homogeneous cell populations using genetically identical model organisms. A new gene set test procedure (CAMERA) is proposed based on the idea of estimating the inter-gene correlation from the data, and using it to adjust the gene set test statistic. An efficient procedure is developed for estimating the inter-gene correlation and characterizing its precision. CAMERA is shown to control the type I error rate correctly regardless of inter-gene correlations, yet retains excellent power for detecting genuine differential expression. Analysis of breast cancer data shows that CAMERA recovers known relationships between tumor subtypes in very convincing terms. CAMERA can be used to analyze specified sets or as a pathway analysis tool using a database of molecular signatures.  相似文献   

4.
Qin LX  Self SG 《Biometrics》2006,62(2):526-533
Identification of differentially expressed genes and clustering of genes are two important and complementary objectives addressed with gene expression data. For the differential expression question, many "per-gene" analytic methods have been proposed. These methods can generally be characterized as using a regression function to independently model the observations for each gene; various adjustments for multiplicity are then used to interpret the statistical significance of these per-gene regression models over the collection of genes analyzed. Motivated by this common structure of per-gene models, we proposed a new model-based clustering method--the clustering of regression models method, which groups genes that share a similar relationship to the covariate(s). This method provides a unified approach for a family of clustering procedures and can be applied for data collected with various experimental designs. In addition, when combined with per-gene methods for assessing differential expression that employ the same regression modeling structure, an integrated framework for the analysis of microarray data is obtained. The proposed methodology was applied to two microarray data sets, one from a breast cancer study and the other from a yeast cell cycle study.  相似文献   

5.
6.
Cluster analysis has proven to be a valuable statistical method for analyzing whole genome expression data. Although clustering methods have great utility, they do represent a lower level statistical analysis that is not directly tied to a specific model. To extend such methods and to allow for more sophisticated lines of inference, we use cluster analysis in conjunction with a specific model of gene expression dynamics. This model provides phenomenological dynamic parameters on both linear and non-linear responses of the system. This analysis determines the parameters of two different transition matrices (linear and nonlinear) that describe the influence of one gene expression level on another. Using yeast cell cycle microarray data as test set, we calculated the transition matrices and used these dynamic parameters as a metric for cluster analysis. Hierarchical cluster analysis of this transition matrix reveals how a set of genes influence the expression of other genes activated during different cell cycle phases. Most strikingly, genes in different stages of cell cycle preferentially activate or inactivate genes in other stages of cell cycle, and this relationship can be readily visualized in a two-way clustering image. The observation is prior to any knowledge of the chronological characteristics of the cell cycle process. This method shows the utility of using model parameters as a metric in cluster analysis.  相似文献   

7.
8.
Organisms usually cope with change in the environment by altering the dynamic trajectory of gene expression to adjust the complement of active proteins. The identification of particular sets of genes whose expression is adaptive in response to environmental changes helps to understand the mechanistic base of gene-environment interactions essential for organismic development. We describe a computational framework for clustering the dynamics of gene expression in distinct environments through Gaussian mixture fitting to the expression data measured at a set of discrete time points. We outline a number of quantitative testable hypotheses about the patterns of dynamic gene expression in changing environments and gene-environment interactions causing developmental differentiation. The future directions of gene clustering in terms of incorporations of the latest biological discoveries and statistical innovations are discussed. We provide a set of computational tools that are applicable to modeling and analysis of dynamic gene expression data measured in multiple environments.  相似文献   

9.
This paper concerns prediction of clinical outcome from gene expression profiles using work in a different area, nonlinear system identification. In particular, the approach can predict long-term treatment response from data of a landmark article by Golub et al. (Golub, T. R.; Slonim, D. K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J. P. et al. Science 1999, 286, 531-537) that has not previously been achieved with these data. The present paper shows that, for these data, gene expression profiles taken at time of diagnosis of acute myeloid leukemia contain information predictive of eventual response to chemotherapy. This was not evident in previous work; indeed, the Golub et al. article did not find a set of genes strongly correlated with clinical outcome. However, the present approach can accurately predict outcome class of gene expression profiles even when the genes do not have large differences in expression levels between the classes.  相似文献   

10.
In DNA microarray studies, gene-set analysis (GSA) has become the focus of gene expression data analysis. GSA utilizes the gene expression profiles of functionally related gene sets in Gene Ontology (GO) categories or priori-defined biological classes to assess the significance of gene sets associated with clinical outcomes or phenotypes. Many statistical approaches have been proposed to determine whether such functionally related gene sets express differentially (enrichment and/or deletion) in variations of phenotypes. However, little attention has been given to the discriminatory power of gene sets and classification of patients.  相似文献   

11.
Comparing the gene-expression profiles of sick and healthy individuals can help in understanding disease. Such differential expression analysis is a well-established way to find gene sets whose expression is altered in the disease. Recent approaches to gene-expression analysis go a step further and seek differential co-expression patterns, wherein the level of co-expression of a set of genes differs markedly between disease and control samples. Such patterns can arise from a disease-related change in the regulatory mechanism governing that set of genes, and pinpoint dysfunctional regulatory networks.Here we present DICER, a new method for detecting differentially co-expressed gene sets using a novel probabilistic score for differential correlation. DICER goes beyond standard differential co-expression and detects pairs of modules showing differential co-expression. The expression profiles of genes within each module of the pair are correlated across all samples. The correlation between the two modules, however, differs markedly between the disease and normal samples.We show that DICER outperforms the state of the art in terms of significance and interpretability of the detected gene sets. Moreover, the gene sets discovered by DICER manifest regulation by disease-specific microRNA families. In a case study on Alzheimer''s disease, DICER dissected biological processes and protein complexes into functional subunits that are differentially co-expressed, thereby revealing inner structures in disease regulatory networks.  相似文献   

12.
卢汀 《生物信息学》2014,12(2):140-144
基因的差异化表达由多种因素共同导致,并且与许多疾病的发生和发展有密切联系,对差异化表达的基因进行生物信息学以及生物统计学的分析对于研究细胞调节机制和疾病机理有着重要意义。目前,对差异化表达的基因有以下几种主流的研究方法:DNA微阵列(DNA microarray),抑制性消减杂交(SSH),基因表达连续性分析(SAGE),代表性差异分析(RDA),以及mRNA差异显示PCR(mRNA DDRT-PCR)。目前许多基因差异化表达数据是建立在时段(time series)基础上,因此对基于时间变化的基因差异化表达分析变得尤为重要。本文将对差异化表达基因的几种主流方法进行详细阐述,并介绍一种基于傅里叶函数的时段基因差异化表达分析。  相似文献   

13.
Genomics and proteomics approaches generate distinct gene expression and protein profiles, listing individual genes embedded in broad functional terms as gene ontologies. However, interpretation of gene profiles in a regulatory and functional context remains a major issue. Elucidation of regulatory mechanisms at the gene expression level via analysis of promoter regions is a prominent procedure to decipher such gene regulatory networks. We propose a novel genetic algorithm (GA) to extract joint promoter modules in a set of coexpressed genes as resulting from differential gene expression experiments. Algorithm design has focused on the following constraints: (I) identification of the major promoter modules, which are (II) characterized by a maximum number of joint motifs and (III) are found in a maximum number of coexpressed genes. The capability of the GA in detecting multiple modules was evaluated on various test data sets, analyzing the impact of the number of motifs per promoter module, the number of genes associated with a module, as well as the total number of distinct promoter modules encoded in a sequence set. In addition to the test data sets, the GA was evaluated on two biological examples, namely a muscle-specific data set and the upstream sequences of the beta-actin gene (ACTB) derived from different species, complemented by a comparison to alternative promoter module identification routines.  相似文献   

14.
Although it is increasingly evident that cancer is influenced by signals emanating from tumor stroma, little is known regarding how changes in stromal gene expression affect epithelial tumor progression. We used laser capture microdissection to compare gene expression profiles of tumor stroma from 53 primary breast tumors and derived signatures strongly associated with clinical outcome. We present a new stroma-derived prognostic predictor (SDPP) that stratifies disease outcome independently of standard clinical prognostic factors and published expression-based predictors. The SDPP predicts outcome in several published whole tumor-derived expression data sets, identifies poor-outcome individuals from multiple clinical subtypes, including lymph node-negative tumors, and shows increased accuracy with respect to previously published predictors, especially for HER2-positive tumors. Prognostic power increases substantially when the predictor is combined with existing outcome predictors. Genes represented in the SDPP reveal the strong prognostic capacity of differential immune responses as well as angiogenic and hypoxic responses, highlighting the importance of stromal biology in tumor progression.  相似文献   

15.
Mining gene expression databases for association rules   总被引:16,自引:0,他引:16  
  相似文献   

16.
Complexity of gene regulatory network has been considered to be responsible for diversity of cells. Different types of cells, characterized by the expression patterns of genes, are produced in early development through the dynamics of gene activities based on the regulatory network. However, very little is known about relationship between the structure of regulatory networks and the dynamics of gene activities. In this paper, I introduce new idea of “steady-state compatibility” by which the diversity of possible gene activities can be determined from the topological structure of gene regulatory networks. The basic premise is very simple: the activity of a gene should be a function of the controlling genes. Thus, a gene should always show unique expression activity if the activities of the controlling genes are unique. Based on this, the maximum possible diversity of steady states is determined using only information regarding regulatory linkages without knowing the regulatory functions of genes. By extending this idea, some general properties were derived. For example, multiple loop structures in regulatory networks are necessary for increasing the diversity of gene activity. On the other hand, connected multiple loops sharing the same genes do not increase the diversity. The method was applied to a gene regulatory network responsible for early development in a sea urchin species. A set of important genes responsible for generating diversities of gene activities was derived based on the concept of compatibility of steady states.  相似文献   

17.
MOTIVATION: Association pattern discovery (APD) methods have been successfully applied to gene expression data. They find groups of co-regulated genes in which the genes are either up- or down-regulated throughout the identified conditions. These methods, however, fail to identify similarly expressed genes whose expressions change between up- and down-regulation from one condition to another. In order to discover these hidden patterns, we propose the concept of mining co-regulated gene profiles. Co-regulated gene profiles contain two gene sets such that genes within the same set behave identically (up or down) while genes from different sets display contrary behavior. To reduce and group the large number of similar resulting patterns, we propose a new similarity measure that can be applied together with hierarchical clustering methods. RESULTS: We tested our proposed method on two well-known yeast microarray data sets. Our implementation mined the data effectively and discovered patterns of co-regulated genes that are hidden to traditional APD methods. The high content of biologically relevant information in these patterns is demonstrated by the significant enrichment of co-regulated genes with similar functions. Our experimental results show that the Mining Attribute Profile (MAP) method is an efficient tool for the analysis of gene expression data and competitive with bi-clustering techniques.  相似文献   

18.
Recent large-scale studies of evolutionary changes in gene expression among mammalian species have led to the proposal that gene expression divergence may be neutral with respect to organismic fitness. Here, we employ a comparative analysis of mammalian gene sequence divergence and gene expression divergence to test the hypothesis that the evolution of gene expression is predominantly neutral. Two models of neutral gene expression evolution are considered: 1-purely neutral evolution (i.e., no selective constraint) of gene expression levels and patterns and 2-neutral evolution accompanied by selective constraint. With respect to purely neutral evolution, levels of change in gene expression between human-mouse orthologs are correlated with levels of gene sequence divergence that are determined largely by purifying selection. In contrast, evolutionary changes of tissue-specific gene expression profiles do not show such a correlation with sequence divergence. However, divergence of both gene expression levels and profiles are significantly lower for orthologous human-mouse gene pairs than for pairs of randomly chosen human and mouse genes. These data clearly point to the action of selective constraint on gene expression divergence and are inconsistent with the purely neutral model; however, there is likely to be a neutral component in evolution of gene expression, particularly, in tissues where the expression of a given gene is low and functionally irrelevant. The model of neutral evolution with selective constraint predicts a regular, clock-like accumulation of gene expression divergence. However, relative rate tests of the divergence among human-mouse-rat orthologous gene sets reveal clock-like evolution for gene sequence divergence, and to a lesser extent for gene expression level divergence, but not for the divergence of tissue-specific gene expression profiles. Taken together, these results indicate that gene expression divergence is subject to the effects of purifying selective constraint and suggest that it might also be substantially influenced by positive Darwinian selection.  相似文献   

19.
20.
ABSTRACT: BACKGROUND: Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. RESULTS: We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. CONCLUSIONS: Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses such data. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号