首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction of non-natural entities into proteins by chemical modification has numerous applications in fundamental biological science and for the development and manipulation of peptide and protein therapeutics. The reduction of native disulfide bonds provides a convenient method to access two nucleophilic cysteine residues that can serve as ideal attachment points for such chemical modification. The optimum bioconjugation strategy utilizing these cysteine residues should include the reconstruction of a bridge to mimic the role of the disulfide bond, maintaining structure and stability of the protein. Furthermore, the bridging chemical modification should be as rapid as possible to prevent problems associated with protein unfolding, aggregation, or disulfide scrambling. This study reports on an in situ disulfide reduction-bridging strategy that ensures rapid sequestration of the free cysteine residues in a bridge, using dithiomaleimides. This approach is then used to PEGylate the peptide hormone somatostatin and retention of biological activity is demonstrated.  相似文献   

2.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) are a cause of a familial form of amyotrophic lateral sclerosis. Wild-type SOD1 forms a highly conserved intra-molecular disulfide bond, whereas pathological SOD1 proteins are cross-linked via intermolecular disulfide bonds and form insoluble oligomers. A thiol-disulfide status in SOD1 will thus play a regulatory role in determining its folding/misfolding pathways; however, it remains unknown how pathogenic mutations in SOD1 affect the thiol-disulfide status to facilitate the protein misfolding. Here, we show that the structural destabilization of SOD1 scrambles a disulfide bond among four Cys residues in an SOD1 molecule. The disulfide scrambling produces SOD1 monomers with distinct electrophoretic mobility and also reproduces the formation of disulfide-linked oligomers. We have also found that the familial form of amyotrophic lateral sclerosis-causing mutations facilitate the disulfide scrambling in SOD1. Based upon our results, therefore, scrambling of the conserved disulfide bond will be a key event to cause the pathological changes in disease-associated mutant SOD1 proteins.  相似文献   

3.
Mutant analogues of recombinant human immune interferon (IFN-gamma) with higher stability and biological activity were prepared. Depending on the analogue, protein structure modification might involve introduction of an intramonomer disulfide bond (through replacements of Glu7Cys and Ser69Cys), C-terminal shortening by 10 amino acid residues, as well as Gln133Leu substitution in truncated variant. Isolation, purification, and renaturation of the IFN-gamma analogues expressed in Escherichia coli as inclusion bodies were performed according to the scheme developed earlier for wild-type protein. The main idea of this scheme is to remove cellular impurities before recombinant protein renaturation. Folding kinetics of IFN-gamma was studied by reversed-phase HPLC. IFN-gamma and mutant proteins were characterized by their thermal stability and biological activity. Introduction of the intramolecular disulfide bond together with C-terminal shortening and replacement of C-terminal residue was shown to result in increasing the thermal stability by 19 degrees C and four times enhancement of biological activity compared with intact IFN-gamma molecule.  相似文献   

4.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

5.
Calcium regulates folding and disulfide-bond formation in alpha-lactalbumin   总被引:2,自引:0,他引:2  
Refolding and disulfide bond formation in reduced denatured bovine alpha-lactalbumin is shown to be Ca2+-dependent. Whereas in the absence of Ca2+ only about 2% of the native active protein is regenerated, in the presence of Ca2+, almost quantitative renaturation is obtained. A close coupling between Ca2+-binding and native disulfide bond formation is also indicated by spontaneous disulfide scrambling in the apoprotein in the presence of low concentrations of thiols. This phenomenon is not found in other disulfide-containing proteins including the homologous chicken lysozyme. It is proposed that the alpha-lactalbumin Ca2+-binding site has the in vivo function of imposing Ca2+ regulation on the folding of nascent alpha-lactalbumin and thereby on lactose synthesis.  相似文献   

6.
Disulfide bonds are important structural motifs that play an essential role in maintaining the conformational stability of many bioactive peptides. Of particular importance are the conotoxins, which selectively target a wide range of ion channels that are implicated in numerous disease states. Despite the enormous potential of conotoxins as therapeutics, their multiple disulfide bond frameworks are inherently unstable under reducing conditions. Reduction or scrambling by thiol-containing molecules such as glutathione or serum albumin in intracellular or extracellular environments such as blood plasma can decrease their effectiveness as drugs. To address this issue, we describe a new class of selenoconotoxins where cysteine residues are replaced by selenocysteine to form isosteric and nonreducible diselenide bonds. Three isoforms of alpha-conotoxin ImI were synthesized by t-butoxycarbonyl chemistry with systematic replacement of one ([Sec(2,8)]ImI or [Sec(3,12)]ImI), or both ([Sec(2,3,8,12)]ImI) disulfide bonds with a diselenide bond. Each analogue demonstrated remarkable stability to reduction or scrambling under a range of chemical and biological reducing conditions. Three-dimensional structural characterization by NMR and CD spectroscopy indicates conformational preferences that are very similar to those of native ImI, suggesting fully isomorphic structures. Additionally, full bioactivity was retained at the alpha7 nicotinic acetylcholine receptor, with each selenoanalogue exhibiting a dose-response curve that overlaps with wild-type ImI, thus further supporting an isomorphic structure. These results demonstrate that selenoconotoxins can be used as highly stable scaffolds for the design of new drugs.  相似文献   

7.
The detection of free sulfhydryls in proteins can reveal incomplete disulfide bond formation, indicate cysteine residues available for conjugation, and offer insights into protein stability and structure. Traditional spectroscopic methods of free sulfhydryl detection, such as Ellman’s reagent, generally require a relatively large amount of sample, preventing their use for the analysis of biotherapeutics early in the development cycle. These spectroscopic methods also cannot accurately determine the location of the free sulfhydryl, further limiting their utility. Mass spectrometry was used to detect free sulfhydryl residues in intact proteins after labeling with Maleimide-PEG2-Biotin. As little as 2% cysteine residues with free sulfhydryls (0.02 mol SH per mol protein) could be detected by this method. Following reduction, the free sulfhydryl abundance on antibody heavy and light chains could be measured. To determine free sulfhydryl location at peptide-level resolution, free sulfhydryls and cysteines involved in disulfide bonds were differentially labeled with N-ethylmaleimide and d5-N-ethylmaleimide, respectively. Following enzymatic digestion and nanoLC-MS, the abundance of free sulfhydryls at individual cysteine residues was quantified down to 2%. The method was optimized to avoid non-specific labeling, disulfide bond scrambling, and maleimide exchange and hydrolysis. This new workflow for free sulfhydryl analysis was used to measure the abundance and location of free sulfhydryls in 3 commercially available monoclonal antibody standards (NIST Monoclonal Antibody Reference Material (NIST), SILu?Lite SigmaMAb Universal Antibody Standard (Sigma-Aldrich) and Intact mAb Mass Check Standard (Waters)) and 1 small protein standard (β-Lactoglobulin A).  相似文献   

8.
T Y Lin  P S Kim 《Biochemistry》1989,28(12):5282-5287
Thioredoxin contains a single disulfide bond that can be reduced without perturbing significantly the structure of the enzyme. Upon reduction of the disulfide, protein stability decreases. We have experimentally tested the expected linkage relationship between disulfide bond formation and protein stability for thioredoxin. In order to do this, it is necessary to measure the equilibrium constant for disulfide bond formation in both the folded and unfolded states of the protein. Using glutathione as a reference species, we have measured the equilibrium constant for forming the disulfide bond (effective concentration) in thioredoxin as a function of urea concentration. As a control, we show that urea per se does not interfere with our measurements of thiol-disulfide equilibrium constants. Comparison of the values obtained for disulfide bond formation in the folded and unfolded states with the free energies for unfolding oxidized and reduced thioredoxin using circular dichroism confirms the expected linkage relationship. The urea dependence of thiol-disulfide equilibria provides a sensitive assay for folded structure in peptides or proteins. The method should also be useful to evaluate the stabilizing or destabilizing effect of natural or genetically engineered disulfides in proteins. In future work, the effects of amino acid substitutions on disulfide bond formation could be evaluated individually in the native and unfolded states of a protein.  相似文献   

9.
The disulfide bond structures established decades ago for immunoglobulins have been challenged by findings from extensive characterization of recombinant and human monoclonal IgG antibodies. Non-classical disulfide bond structure was first identified in IgG4 and later in IgG2 antibodies. Although, cysteine residues should be in the disulfide bonded states, free sulfhydryls have been detected in all subclasses of IgG antibodies. In addition, disulfide bonds are susceptible to chemical modifications, which can further generate structural variants such as IgG antibodies with trisulfide bond or thioether linkages. Trisulfide bond formation has also been observed for IgG of all subclasses. Degradation of disulfide bond through β-elimination generates free sulfhydryls disulfide and dehydroalanine. Further reaction between free sulfhydryl and dehydroalanine leads to the formation of a non-reducible cross-linked species. Hydrolysis of the dehydroalanine residue contributes substantially to antibody hinge region fragmentation. The effect of these disulfide bond variations on antibody structure, stability and biological function are discussed in this review.Key words: recombinant monoclonal antibody, disulfide bond, trisulfide bond, free sulfhydryl, dehydroalanine, thioether, aggregation  相似文献   

10.
The evolution of oxygenic photosynthesis in cyanobacteria nearly three billion years ago provided abundant reducing power and facilitated the elaboration of numerous oxygen-dependent reactions in our biosphere. Cyanobacteria contain an internal thylakoid membrane system, the site of photosynthesis, and a typical Gram-negative envelope membrane system. Like other organisms, the extracytoplasmic space in cyanobacteria houses numerous cysteine-containing proteins. However, the existence of a biochemical system for disulfide bond formation in cyanobacteria remains to be determined. Extracytoplasmic disulfide bond formation in non-photosynthetic organisms is catalyzed by coordinated interaction between two proteins, a disulfide carrier and a disulfide generator. Here we describe a novel gene, SyndsbAB, required for disulfide bond formation in the extracytoplasmic space of cyanobacteria. The SynDsbAB orthologs are present in most cyanobacteria and chloroplasts of higher plants with fully sequenced genomes. The SynDsbAB protein contains two distinct catalytic domains that display significant similarity to proteins involved in disulfide bond formation in Escherichia coli and eukaryotes. Importantly, SyndsbAB complements E. coli strains defective in disulfide bond formation. In addition, the activity of E. coli alkaline phosphatase localized to the periplasm of Synechocystis 6803 is dependent on the function of SynDsbAB. Deletion of SyndsbAB in Synechocystis 6803 causes significant growth impairment under photoautotrophic conditions and results in hyper-sensitivity to dithiothreitol, a reductant, whereas diamide, an oxidant had no effect on the growth of the mutant strains. We conclude that SynDsbAB is a critical protein for disulfide bond formation in oxygenic photosynthetic organisms and required for their optimal photoautotrophic growth.  相似文献   

11.
The potential for engineering stable proteins with multiple amino acid substitutions was explored. Eleven lysine, five methionine, two tryptophan, one glycine, and three threonine substitutions were simultaneously made in barley chymotrypsin inhibitor-2 (CI-2) to substantially improve the essential amino acid content of the protein. These substitutions were chosen based on the three-dimensional structure of CI-2 and an alignment of homologous sequences. The initial engineered protein folded into a wild-type-like structure, but had a free energy of unfolding of only 2.2 kcal/mol, considerably less than the wild-type value of 7.5 kcal/mol. Restoration of the lysine mutation at position 67 to the wild-type arginine increased the free energy of unfolding to 3.1 kcal/mol. Subsequent cysteine substitutions at positions 22 and 82 resulted in disulfide bond formation and a protein with nearly wild-type thermodynamic stability (7.0 kcal/mol). None of the engineered proteins retained inhibitory activity against chymotrypsin or elastase, and all had substantially reduced inhibitory activity against subtilisin. The proteolytic stabilities of the proteins correlated with their thermodynamic stabilities. Reduction of the disulfide bond resulted in substantial loss of both thermodynamic and proteolytic stabilities, confirming that the disulfide bond, and not merely the cysteine substitutions, was responsible for the increased stability. We conclude that it is possible to replace over a third of the residues in CI-2 with minimal disruption of stability and structural integrity.  相似文献   

12.
Disulfide bonds are covalent bonds formed post-translationally by the oxidation of a pair of cysteines. A disulfide bond can serve structural, catalytic, and signaling roles. However, there is an inherent problem to the process of disulfide bond formation: mis-pairing of cysteines can cause misfolding, aggregation and ultimately result in low yields during protein production. Recent developments in the understanding of the mechanisms involved in the formation of disulfide bonds have allowed the research community to engineer and develop methods to produce multi-disulfide-bonded proteins to high yields. This review attempts to highlight the mechanisms responsible for disulfide bond formation in Escherichia coli, both in its native periplasmic compartment in wild-type strains and in the genetically modified cytoplasm of engineered strains. The purpose of this review is to familiarize the researcher with the biological principles involved in the formation of disulfide-bonded proteins with the hope of guiding the scientist in choosing the optimum expression system.  相似文献   

13.
The formation of disulfide bonds between cysteine residues is crucial for the stabilization of native protein structures and, thus, determination of disulfide linkages is an important facet of protein structural characterization. Nonetheless, the identification of disulfide bond linkages remains a significant analytical challenge, particularly in large proteins with complex disulfide patterns. Herein, we have developed a new LC/MS strategy for rapid screening of disulfides in an intact protein mixture after a straightforward reduction step with tris(2‐carboxyethyl)phosphine. LC/MS analysis of reduced and nonreduced protein mixtures quickly revealed disulfide‐containing proteins owing to a 2 Da mass increase per disulfide reduction and, subsequently, the total number of disulfide bonds in the intact proteins could be determined. We have demonstrated the effectiveness of this method in a protein mixture composed of both disulfide‐containing and disulfide‐free proteins. Our method is simple (no need for proteolytic digestion, alkylation, or the removal of reducing agents prior to MS analysis), high throughput (fast on‐line LC/MS analysis), and reliable (no S–S scrambling), underscoring its potential as a rapid disulfide screening method for proteomics applications.  相似文献   

14.
Disulfide bridges have an enormous impact on the structure of a large number of proteins and polypeptides. Understanding the structural basis that regulates their formation may be important for the design of novel peptide-based molecules with a specific fold and stability. Here we report a statistical analysis of the relationships between secondary structure and disulfide bond formation, carried out using a large database of protein structures. Our analyses confirm the observation sporadically reported in previous investigations that cysteine residues located in alpha-helices display a limited tendency to form disulfide bridges. The very low occurrence of the disulfide bond in all alpha-chains compared to all beta-chains indicates that this property is also evident when proteins with different topologies are investigated. Taking advantage of the large database that endorsed the analysis on relatively rare motifs, we demonstrate that cysteine residues embedded in 3(10) helices present a good tendency to form disulfide bonds. This result is somewhat surprising since 3(10) helices are commonly assimilated into alpha-helices. A plausible structural explanation for the observed data has been derived combining analyses of disulfide bond sequence separation and of the length of the different secondary structure elements.  相似文献   

15.
本文对蛋白质中二硫键附近的残基进行了计算机统计分析,结果发现平行和反平行残基间存在着特异的配对规律。这种残基间的相互作用或识别,可能与蛋白质折叠过程中正确地形成二硫键有关。该结果有助于蛋白质工程设计。  相似文献   

16.
Guo ZY  Shen L  Feng YM 《Biochemistry》2002,41(34):10585-10592
Insulin and insulin-like growth factor 1 (IGF-1) share homologous sequence, similar three-dimensional structure, and weakly overlapping biological activity, but different folding information is stored in their homologous sequences: the sequence of insulin encodes one unique thermodynamically stable three-dimensional structure while that of IGF-1 encodes two disulfide isomers with different three-dimensional structure but similar thermodynamic stability. Their different folding behavior probably resulted from the different energetic state of the intra A-chain/domain disulfide: the intra A-chain disulfide of insulin is a stable bond while that of IGF-1 is a strained bond with high energy. To find out the sequence determinant of the different energetic state of their intra A-chain/domain disulfide, the following experiments were carried out. First, a local chimeric single-chain insulin (PIP) with the A8-A10 residues replaced by the corresponding residues of IGF-1 was prepared. Second, the disulfide stability of two global hybrids of insulin and IGF-1, Ins(A)/IGF-1(B) and Ins(B)/IGF-1(A), was investigated. The local segment swap had no effect on the fidelity of disulfide pairing and the disulfide stability of PIP molecule although the swapped segment is close to the intra A-chain/domain disulfide. In redox buffer which favors the disulfide formation for most proteins, Ins(A)/IGF-1(B) cannot form and maintain its native disulfides just like that of IGF-1, while the disulfides of Ins(B)/IGF-1(A) are stable in the same condition. One major equilibrium intermediate with two disulfides of Ins(A)/IGF-1(B) was purified and characterized. V8 endoproteinase cleavage and circular dichroism analysis suggested that the intra A-chain/domain disulfide was reduced in the intermediate. Our present results suggested that the energetic state of the intra A-chain/domain disulfide of insulin and IGF-1 was not controlled by the A-chain/domain sequence close to this disulfide but was mainly controlled by the sequence of the B-chain/domain.  相似文献   

17.
Trisulfides are a posttranslational modification formed by the insertion of a sulfur atom into a disulfide bond. Although reports for trisulfides in proteins are limited, we find that they are a common modification in natural and recombinant antibodies of all immunoglobulin G (IgG) subtypes. Trisulfides were detected only in interchain linkages and were predominantly in the light-heavy linkages. Factors that lead to trisulfide formation and elimination and their impact on activity and stability were investigated. The peptide mapping methods developed for characterization and quantification of trisulfides should be applicable to any antibody and can be easily adapted for other types of proteins.  相似文献   

18.
PEGylation has turned proteins into important new biopharmaceuticals. The fundamental problems with the existing approaches to PEGylation are inefficient conjugation and the formation of heterogeneous mixtures. This is because poly(ethylene glycol) (PEG) is usually conjugated to nucleophilic amine residues. Our PEGylation protocol solves these problems by exploiting the chemical reactivity of both of the sulfur atoms in the disulfide bond of many biologically relevant proteins. An accessible disulfide bond is mildly reduced to liberate the two cysteine sulfur atoms without disturbing the protein's tertiary structure. Site-specific PEGylation is achieved with a bis-thiol alkylating PEG reagent that sequentially undergoes conjugation to form a three-carbon bridge. The two sulfur atoms are re-linked with PEG selectively conjugated to the bridge. PEGylation of a protein can be completed in 24 h and purification of the PEG-protein conjugate in another 3 h. We have successfully applied this approach to PEGylation of cytokines, enzymes, antibody fragments and peptides, without destroying their tertiary structure or abolishing their biological activity.  相似文献   

19.
The in vivo formation of disulfide bonds, which is critical for the stability and/or activity of many proteins, is catalyzed by thiol-disulfide oxidoreductases. In the present studies, we show that the Gram-positive eubacterium Bacillus subtilis contains three genes, denoted bdbA, bdbB, and bdbC, for thiol-disulfide oxidoreductases. Escherichia coli alkaline phosphatase, containing two disulfide bonds, was unstable when secreted by B. subtilis cells lacking BdbB or BdbC, and notably, the expression levels of bdbB and bdbC appeared to set a limit for the secretion of active alkaline phosphatase. Cells lacking BdbC also showed decreased stability of cell-associated forms of E. coli TEM-beta-lactamase, containing one disulfide bond. In contrast, BdbA was not required for the stability of alkaline phosphatase or beta-lactamase. Because BdbB and BdbC are typical membrane proteins, our findings suggest that they promote protein folding at the membrane-cell wall interface. Interestingly, pre-beta-lactamase processing to its mature form was stimulated in cells lacking BdbC, suggesting that the unfolded form of this precursor is a preferred substrate for signal peptidase. Surprisingly, cells lacking BdbC did not develop competence for DNA uptake, indicating the involvement of disulfide bond-containing proteins in this process. Unlike E. coli and yeast, none of the thiol-disulfide oxidoreductases of B. subtilis was required for growth in the presence of reducing agents. In conclusion, our observations indicate that BdbB and BdbC have a general role in disulfide bond formation, whereas BdbA may be dedicated to a specific process.  相似文献   

20.
There are many examples of bioactive, disulfide‐rich peptides and proteins whose biological activity relies on proper disulfide connectivity. Regioselective disulfide bond formation is a strategy for the synthesis of these bioactive peptides, but many of these methods suffer from a lack of orthogonality between pairs of protected cysteine (Cys) residues, efficiency, and high yields. Here, we show the utilization of 2,2′‐dipyridyl diselenide (PySeSePy) as a chemical tool for the removal of Cys‐protecting groups and regioselective formation of disulfide bonds in peptides. We found that peptides containing either Cys(Mob) or Cys(Acm) groups treated with PySeSePy in trifluoroacetic acid (TFA) (with or without triisopropylsilane (TIS) were converted to Cys‐S–SePy adducts at 37 °C and various incubation times. This novel Cys‐S–SePy adduct is able to be chemoselectively reduced by five‐fold excess ascorbate at pH 4.5, a condition that should spare already installed peptide disulfide bonds from reduction. This chemoselective reduction by ascorbate will undoubtedly find utility in numerous biotechnological applications. We applied our new chemistry to the iodine‐free synthesis of the human intestinal hormone guanylin, which contains two disulfide bonds. While we originally envisioned using ascorbate to chemoselectively reduce one of the formed Cys‐S–SePy adducts to catalyze disulfide bond formation, we found that when pairs of Cys(Acm) residues were treated with PySeSePy in TFA, the second disulfide bond formed spontaneously. Spontaneous formation of the second disulfide is most likely driven by the formation of the thermodynamically favored diselenide (PySeSePy) from the two Cys‐S–SePy adducts. Thus, we have developed a one‐pot method for concomitant deprotection and disulfide bond formation of Cys(Acm) pairs in the presence of an existing disulfide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号