首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The human complement system plays an essential role in innate and adaptive immunity by marking and eliminating microbial intruders. Activation of complement on foreign surfaces results in proteolytic cleavage of complement component 3 (C3) into the potent opsonin C3b, which triggers a variety of immune responses and participates in a self-amplification loop mediated by a multi-protein assembly known as the C3 convertase. The human pathogen Staphylococcus aureus has evolved a sophisticated and potent complement evasion strategy, which is predicated upon an arsenal of potent inhibitory proteins. One of these, the staphylococcal complement inhibitor (SCIN), acts at the level of the C3 convertase (C3bBb) and impairs downstream complement function by trapping the convertase in a stable but inactive state. Previously, we have shown that SCIN binds C3b directly and competitively inhibits binding of human factor H and, to a lesser degree, that of factor B to C3b. Here, we report the co-crystal structures of SCIN bound to C3b and C3c at 7.5 and 3.5 Å limiting resolution, respectively, and show that SCIN binds a critical functional area on C3b. Most significantly, the SCIN binding site sterically occludes the binding sites of both factor H and factor B. Our results give insight into SCIN binding to activated derivatives of C3, explain how SCIN can recognize C3b in the absence of other complement components, and provide a structural basis for the competitive C3b-binding properties of SCIN. In the future, this may suggest templates for the design of novel complement inhibitors based upon the SCIN structure.  相似文献   

2.
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were exposed to increasing Fe(2+) concentrations (25, 200 or 800μM) or to the vehicle, and lipid peroxidation levels, mitochondrial function, and the activities of cytosolic PLA(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) were studied. Incubation with Fe(2+) led to a time- and concentration-dependent increase in retinal lipid peroxidation levels whereas retinal cell viability was only affected after 60min of oxidative injury. A differential release of arachidonic acid (AA) and palmitic acid (PAL) catalyzed by cPLA(2) and iPLA(2) activities, respectively, was also observed in microsomal and cytosolic fractions obtained from retinas incubated with iron. AA release diminished as the association of cyclooxigenase-2 increased in microsomes from retinas exposed to iron. Retinal lipid peroxidation and cell viability were also analyzed in the presence of cPLA(2) inhibitor, arachidonoyl trifluoromethyl ketone (ATK), and in the presence of iPLA(2) inhibitor, bromoenol lactone (BEL). ATK decreased lipid peroxidation levels and also ERK1/2 activation without affecting cell viability. BEL showed the opposite effect on lipid peroxidation. Our results demonstrate that iPLA(2) and cPLA(2) are differentially regulated and that they selectively participate in retinal signaling in an experimental model resembling AMD.  相似文献   

3.
In the present study, a semiquinone glucoside derivative (SQGD) isolated from a radioresistant bacterium Bacillus sp. INM-1 was evaluated for its immunostimulatory activities. Human peripheral blood mononuclear cells (PBMCs) were stimulated by different doses (30–90 μg/ml) of SQGD for different time (3–12 h) intervals at 37 °C, and IL-12p40, IL-23p19, IL-10, RelA and c-Jun gene expression analysis was carried out by qRT-PCR method. SQGD dose dependent cytokines protein expression kinetic analysis was carried out using western blotting. As the results of SQGD (30 μg/ml) stimulation for 3 h at 37 °C, significant induction in IL-12p40, IL-23p19 and RelA gene expression was observed in PBMCs compared to unstimulated control cells. However, no such induction in IL-10 and c-Jun gene expression was observed. Time dependent protein expression study indicated significant increase in IL-12p40, IL-12p35, IL-23p19 and RelA protein expression at 3–6 h, which was found decrease at 12 h upon SQGD treatment. In contrast, IL-10 protein expression was found to enhance significantly at 12 h after SQGD treatment to the PBMCs. SQGD dose dependent study showed approximately similar level of induction in IL-12p40, IL-12p35, IL-23p19 and RelA proteins expression at all tested concentration (30–90 μg/ml) compared to control. However, no significant change in the IL-10 and c-Jun protein expression was observed at any SQGD concentration. SQGD treatment (0.25 mg/kg b wt.) was also found to enhance anti-keyhole Limpet Hemocynin (KLH) IgM antibodies significantly in the mice immunized by KLH.Thus, SQGD fraction stimulates cellular immunity by inducing immunostimulatory cytokines and humoral immunity by enhancing IgM antibodies and could be a promising immunostimulant. Further studies related to molecular mechanisms offering immunostimulation is underway, will certainly helpful to unravel its mode of action in the biological system.  相似文献   

4.
The retina is exposed to a lifetime of potentially damaging environmental and physiological factors that make the component cells exquisitely sensitive to age-related processes. Retinal ageing is complex and a raft of abnormalities can accumulate in all layers of the retina. Some of this pathology serves as a sinister preamble to serious conditions such as age-related macular degeneration (AMD) which remains the leading cause of irreversible blindness in the Western world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号