首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand for the N/OFQ peptide (NOP) receptors, has been shown to be metabolized into some fragments. We examined to determine whether intrathecal (i.t.) N/OFQ (1-13), (1-11) and (1-7) have antinociceptive activity in the pain-related behavior after intraplantar injection of capsaicin. The i.t. administration of N/OFQ (0.3-1.2 nmol) produced an appreciable and dose-dependent inhibition of capsaicin-induced paw-licking/biting response. The N-terminal fragments of N/OFQ, (1-13) and (1-11), were antinociceptive with a potency lower than N/OFQ. Calculated ID50 values (nmol, i.t.) were 0.83 for N/OFQ, 2.5 for N/OFQ (1-13) and 4.75 for N/OFQ (1-11), respectively. The time-course effect revealed that the antinociceptive effects of these N-terminal fragments lasted longer than those of N/OFQ. Removal of amino acids down to N/OFQ (1-7) led to be less potent than N/OFQ and its fragments, (1-13) and (1-11). Antinociception induced by N/OFQ or N/OFQ (1-13) was reversed significantly by i.t. co-injection of [Nphe1]N/OFQ (1-13)NH2, a peptidergic antagonist for NOP receptors, whereas i.t. injection of the antagonist did not interfere with the action of N/OFQ (1-11) and (1-7). Pretreatment with the opioid receptor antagonist naloxone hydrochloride did not affect the antinociception induced by N/OFQ and its N-terminal fragments. These results suggest that N-terminal fragments of N/OFQ are active metabolites and may modulate the antinociceptive effect of N/OFQ in the spinal cord. The results also indicate that N/OFQ (1-13) still possess antinociceptive activity through NOP receptors.  相似文献   

2.
Wang YQ  Guo J  Wang SB  Fang Q  He F  Wang R 《Peptides》2008,29(7):1183-1190
The present study used the endpoint of hypothermia to investigate opioid and neuropeptide FF (NPFF) interactions in conscious animals. Both opioid and NPFF systems played important roles in thermoregulation, which suggested a link between opioid receptors and NPFF receptors in the production of hypothermia. Therefore, we designed a study to investigate the relationship between opioid and NPFF in control of thermoregulation in mice. The selective NPFF receptors antagonist RF9 (30nmol) injected into the third ventricle failed to induce significant effect, but it completely antagonized the hypothermia of NPFF (45 nmol) after cerebral administration in mice. In addition, RF9 (30 nmol) co-injected i.c.v. in the third ventricle reduced the hypothermia induced by morphine (5nmol,) or nociceptin/orphanin FQ (N/OFQ) (2 nmol). Neither the classical opioid receptors antagonist naloxone (10 nmol) nor NOP receptor antagonist [Nphe(1)]NC(1-13)NH(2) (7.5 nmol) reduced the hypothermia induced by the central injection of NPFF at dose of 45 nmol. Co-injected with a low dose of NPFF (5 nmol), the hypothermia of morphine (5 nmol) or N/OFQ (2 nmol) was not modified. These results suggest that NPFF receptors activation is required for opioid to produce hypothermia. In contrast, NPFF-induced hypothermia is mainly mediated by its own receptors, independent of opioid receptors in the mouse brain. This interaction, quantitated in the present study, is the first evidence that NPFF receptors mediate opioid-induced hypothermia in conscious animals.  相似文献   

3.
The effects of nociceptin(1–13)NH2 (N/OFQ(1–13)NH2) and its structural analogue [Orn9]N/OFQ(1–13)NH2 on acute carrageenan (CG)-induced peripheral inflammation and paw antioxidant status were studied. CG was injected intraplantarly in the right hind paw of rats and the volume of the inflamed paw was measured each 30 min for a period of 4h. When administered simultaneously with CG, N/OFQ(1–13)NH2 decreased the paw volume, whereas if injected 15 min before CG it had no effect. [Orn9]N/OFQ(1–13)NH2 produced the opposite effects at the same time-intervals of its administration. We also investigated whether these neuropeptides influence CG-induced changes in cell antioxidant system, especially at the 4th hour of CG administration. CG alone decreased the glutathione level and superoxide dismutase activity, as measured in post-nuclear homogenate of the inflamed paw. However, CG injection increased glutathione peroxidase and glucose-6-phospate dehydrogenase activities, while the activity of glutathione reductase was unchanged. The peptides themselves did not change all measured parameters. Moreover, neither N/OFQ(1–13)NH2 nor [Orn9]N/OFQ(1–13)NH2 modified CG-induced changes in the antioxidant status, regardless of the time of their injection (simultaneously or 15 min before CG). The present results suggest that N/OFQ(1–13)NH2 and [Orn9]N/OFQ(1–13)NH2 most likely affect the neuronal inflammation, rather than act as pro- or antioxidants.  相似文献   

4.
The in vivo effects of nociceptin (N/OFQ(1–13)NH2) and its structural analogues ([Dab9]N/OFQ(1–13)NH2, [Dap9]N/OFQ(1–13)NH2 and [Cav9]N/OFQ(1–13)NH2) on the levels of lipid peroxidation and cell antioxidants (enzyme and non‐enzyme) in brain of control and kainic acid (KA)‐treated rats were studied. In control animals, [Dab9]N/OFQ(1–13)NH2 and [Dap9]N/OFQ(1–13)NH2, unlike N/OFQ(1–13)NH2 and [Cav9]N/OFQ(1–13)NH2, slightly increased the brain lipid peroxidation; the rest of the parameters were unchanged by all neuropeptides tested. KA (0.25 µg in 0.5 µl, i.c.v) increased the lipid peroxidation (4 and 24 h after KA‐injection) and decreased the glutathione level (1 h after KA‐administration). One hour after KA‐administration, the neuropeptides (2 µg in 0.5 µl, injected 30 min before KA) showed the following effects: a slight decrease in the KA‐induced lipid peroxidation by all nociceptin analogues and an enhancement of the KA‐decreased GSH level, but by [Cav9]N/OFQ(1–13)NH2 only. The brain antioxidant enzyme activities were unchanged in all used experimental groups. In addition, the nociceptin analogues, especially [Can9]N/OFQ(1–13)NH2, showed a good antioxidant capacity in chemical systems, generating reactive oxygen species. In conclusion, the substitution of lysin (Lys) in N/OFQ(1–13)NH2 molecule with other amino acids might contribute to changes in its antioxidant properties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Dynorphin 1-17 (DYN 1-17) is biotransformed rapidly to a range of fragments in rodent inflamed tissue with dynorphin 3-14 (DYN 3-14) being the most stable and prevalent. DYN 1-17 has been shown previously to be involved in the regulation of inflammatory response following tissue injury, in which the biotransformation fragments of DYN 1-17 may possess similar features. This study investigated the effects of DYN 3-14 on lipopolysaccharide (LPS)-induced nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of pro-inflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in differentiated THP-1 cells. Treatment with DYN 3-14 (10 nM) resulted in 35% inhibition of the LPS-induced nuclear translocation of NF-κB/p65. Furthermore, DYN 3-14 modulated both IL-1β and TNF-α release; inhibiting IL-1β and paradoxically augmenting TNF-α release in a concentration-independent manner. A number of opioids have been implicated in the modulation of the toll-like receptor 4 (TLR4), highlighting the complexity of their immunomodulatory effects. To determine whether DYN 3-14 modulates TLR4, HEK-Blue™hTLR4 cells were stimulated with LPS in the presence of DYN 3-14. DYN 3-14 (10 μM) inhibited TLR4 activation in a concentration-dependent fashion by suppressing the LPS signals around 300-fold lower than LPS-RS, a potent TLR4 antagonist. These findings indicate that DYN 3-14 is a potential TLR4 antagonist that alters cellular signaling in response to LPS and cytokine release, implicating a role for biotransformed endogenous opioid peptides in immunomodulation.  相似文献   

6.
Grandi D  Massi M  Morini G 《Peptides》2011,32(4):729-736
The endogenous neuropeptide nociceptin/orphanin FQ (N/OFQ) modulates behavioral and gastrointestinal responses to stress. Mucosal mast cells (MMCs) are primary mediators of stress-related responses in the gastrointestinal tract. We investigated the influence of N/OFQ and of the N/OFQ peptide (NOP) receptor antagonist, UFP-101, on MMCs in the rat gastric fundus. N/OFQ was infused subcutaneously for 52 h at 0.1, 1 and 10 μg/kg/h and at 1 μg/kg/h for 4 h, 52 h, 7 days and 14 days via Alzet osmotic minipumps. Density of MMCs and connective tissue mast cells (CTMCs) was assessed histochemically and immunohistochemically. Activation and location of MMCs were assessed by transmission electron microscopy. Contacts between MMCs and nerve elements were assessed by double immunofluorescence. N/OFQ (1 μg/kg/h) and UFP-101 (10 and 30 μg/kg/h) were infused subcutaneously in the absence and presence of acute cold-restraint stress and density of MMCs was assessed. Peripheral N/OFQ dose-dependently increased the density of MMCs, while not influencing CTMCs. The increasing effect was maintained up to 14 days following continuous infusion, while after termination of the 4-h infusion, the effect declined rapidly. The peptide promoted the activation of MMCs and their migration from the lamina propria toward the epithelial layer. The association between MMCs and nerve fibers was time-dependently down-regulated following N/OFQ infusion. The stress-induced hyperplasia of MMCs was not influenced by N/OFQ and abolished by UFP-101. UFP-101 alone was ineffective. The present results suggest that endogenous N/OFQ could be considered a potential component of the circuit neuropeptides-mast cells-stress.  相似文献   

7.
Takayama N  Ueda H 《Peptides》2005,26(12):2513-2517
The effects of morphine on the gene expression of prepro-nociceptin/orphanin FQ (ppN/OFQ) in various primary cultured brain cells from embryonic day 17, rats were studied by use of real-time RT-PCR method. The basal level of ppN/OFQ mRNA in terms of ratio to the β-actin in astrocytes was equivalent to that in neurons, but 10-times higher than that in microglia. The addition of 1 μM morphine significantly enhanced the ppN/OFQ mRNA levels in cultured astrocytes, but not neurons or microglia. The enhancement was observed as early as 1 h after the addition of morphine, reached maximum at 6 h. There was a concentration-dependency between 30 nM to 1 μM. The morphine-induced enhancement was abolished by naloxone, an antagonist of μ opioid peptide receptor (MOP), wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, and PD98059, a MEK inhibitor, but not by 1,10-phenanthroline, a metalloprotease inhibitor and U73122, a phospholipase C inhibitor. These profiles contrast to the data with morphine-induced enhancement of brain-derived growth factor (BDNF) gene expression in microglia, where 1,10-phenanthroline abolished the expression. Furthermore, the ELISA analysis revealed that the immunoreactive ppN/OFQ or N/OFQ level was also increased by morphine. The present findings suggest that astrocytes could play roles in the neuronal plasticity during morphine chronic treatments by enhancing gene expression of anti-opioid peptide, N/OFQ.  相似文献   

8.
In‐vivo effects of nociceptin (N/OFQ(1‐13)NH2) on the levels of lipid peroxidation and cell enzyme (superoxide dismutase, glutathione peroxidase and glutathione reductase) and non‐enzyme (glutathione) antioxidants in brain of control and kainic acid‐treated rats were studied. N/OFQ(1‐13)NH2 effects were compared with those of its structural analogue [Orn9]N/OFQ(1‐13)NH2. Kainic acid (25 µg, i.c.v) increased the lipid peroxidation (4 and 24 h after kainic acid treatment) and decreased the glutathione level (1 h after kainic acid injection). We failed to find, any changes in antioxidant enzyme activities, independently of the time of kainic acid treatment. At the background of kainic acid‐effects, N/OFQ(1‐13)NH2 and [Orn9] N/OFQ(1‐13)NH2, injected 30 min before kainic acid, had no effects on all parameters, tested in brain. In addition, the neuropeptides did not change the antioxidant status in brain of control animals. It might be concluded that N/OFQ(1‐13)NH2 and [Orn9]N/OFQ(1‐13)NH2 have neither pro‐ nor anti‐oxidant activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A novel opioid receptor-like orphan receptor (ORL1) was cloned and identified to be homologous to classical opioid receptors but insensitive to traditional opioids. A heptadecapeptide, termed orphanin FQ or nociceptin (OFQ/N), was identified as its endogenous ligand. OFQ/N shares overlapping distribution sites in pain-processing areas and common cellular mechanisms with opioids but exerts diverse effects on nociceptive responses. Of the two reported ORL1 antagonists, [Phe(1)psi(CH(2)-NH)- Gly(2)] nociceptin-(1-13)-NH(2) (Phepsi) and naloxone benzoylhydrazone (NBZ), antagonisms were validated in the activation of inward rectifying K channels induced by OFQ/N, using the patch clamp technique in ventrolateral periaqueductal gray slices. Results showed that Phepsi acted as a partial agonist and NBZ was a weak nonselective antagonist of ORL1. It is comparable with most but not all of the findings from other tissues. Comparing all the reports supports the above inference for these two antagonists. The possible causes for the discrepancy were discussed. A brief review on the putative ORL1 antagonists, acetyl-RYYRIK-NH2, some sigma-ligands and the functional antagonist, nocistatin, is also included. It indicates that a potent and selective ORL1 antagonist is expecting to elucidate the physiological role of OFQ/N.  相似文献   

10.
Abstract: The effect of nociceptin/orphanin FQ (N/OFQ), an endogenous ligand for the newly identified opioid receptor-like (ORL1) receptor, on mitogen-activated protein kinase (MAPK) was investigated in Chinese hamster ovary cells stably expressing ORL1 receptor. N/OFQ rapidly stimulated phosphorylation and activity of MAPK (p42 and p44 isoforms) in a concentration-dependent manner. The p42 isoform was preferentially activated by N/OFQ. Maximal activation (5.4 ± 1.2-fold of basal for p42 isoform) was achieved after a 1-min exposure of cells to 100 nM N/OFQ. The activation was blocked completely by pretreatment with pertussis toxin, but was not reversed by naloxone. U-73122, a phospholipase C-specific inhibitor, significantly inhibited phospholipase C activity, as well as MAPK activation stimulated by N/OFQ. Furthermore, N/OFQ-stimulated MAPK activation was suppressed by a protein kinase C-specific inhibitor, chelerythrine. The results demonstrate that N/OFQ can effectively stimulate MAPK by the activation of ORL1 receptor and pertussis toxin-sensitive G proteins, and that phospholipase C, as well as protein kinase C, is critically involved in these processes.  相似文献   

11.
Although orphanin FQ/nociceptin (OFQ/N) receptors are a member of the opioid receptor family of receptors, they bind traditional opioids with very poor affinity. We now demonstrate that mu opioid receptors can physically associate with OFQ/N receptors, resulting in a complex with a unique binding selectivity profile. Immunoprecipitation of epitope-tagged OFQ/N receptors co-precipitates mu receptors. When the two receptors were co-expressed in CHO cells, [3H]OFQ/N retained its high binding affinity for its receptor. However, co-expression of the two receptors increased by up to 250-fold the affinity of a series of opioids in [3H]OFQ/N binding assays. This enhanced affinity was limited to agonists with high affinity for mu receptors. Selective kappa(1) and delta opioids did not lower binding. Despite the dramatic increase in affinity for the opioid agonists in co-expressing cells, the opioid antagonists naloxone and diprenorphine failed to compete [3H]OFQ/N binding.  相似文献   

12.
13.
14.
Nociceptin/orphanin FQ (N/OFQ) has been reported to inhibit dopamine (DA) release in basal ganglia mainly by acting on NOP receptors in substantia nigra and ventral tegmental area. We investigated whether N/OFQ could affect DA transmission by acting at either DA nerve endings or DA-targeted post-synaptic neurons. In synaptosomes of rat nucleus accumbens and striatum N/OFQ inhibited DA synthesis and tyrosine hydroxylase (TH) phosphorylation at Ser40 via NOP receptors coupled to inhibition of the cAMP/protein kinase A pathway. Immunofluorescence studies showed that N/OFQ preferentially inhibited phospho-Ser40-TH in nucleus accumbens shell and that in this subregion NOP receptors partly colocalized with either TH or DA D(1) receptor positive structures. In accumbens and striatum N/OFQ inhibited DA D(1) receptor-stimulated cAMP formation, but failed to affect either adenosine A(2A) or DA D(2) receptor regulation of cAMP. In accumbens slices, N/OFQ inhibited DA D(1)-induced phosphorylation of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, whereas in primary cultures of accumbal cells, which were found to coexpress NOP and DA D(1) receptors, N/OFQ curtailed DA D(1) receptor-induced cAMP-response element-binding protein phosphorylation. Thus, in accumbens and striatum N/OFQ exerts an inhibitory constraint on DA transmission by acting on either pre-synaptic NOP receptors inhibiting TH phosphorylation and DA synthesis or post-synaptic NOP receptors selectively down-regulating DA D(1) receptor signaling.  相似文献   

15.
Nociceptin/orphanin FQ (N/OFQ) and nocistatin are two neuropeptides originated from the same precursor prepronociceptin/orphanin FQ (ppN/OFQ). N/OFQ is the endogenous ligand of the NOP receptor, while the target of action of nocistatin is still unknown. N/OFQ modulates various biological functions, including anxiety. Conversely, nocistatin either behaves as a functional N/OFQ antagonist or evokes per se effects opposite to those of N/OFQ. Here we investigated the interaction between the anxiolytic-like effects of N/OFQ and the anxiogenic-like action of nocistatin with those evoked by GABAA receptor ligands in the mouse elevated plus maze. The anxiogenic-like effects of the GABAA receptor antagonist pentylenetetrazol (20 mg/kg; intraperitoneal, i.p.) were abolished by the co-treatment with N/OFQ (10 pmol; intracerebroventricular, i.c.v.) while potentiated by the administration of nocistatin (0.01 pmol; i.c.v.). The anxiolytic-like effects of the benzodiazepine receptor agonist diazepam (0.75 mg/kg, i.p.) were reversed by nocistatin (0.1 pmol; i.c.v.), whereas signs of sedation were observed when mice were co-treated with diazepam and N/OFQ (3 pmol). Interesting enough, the i.p. treatment with flumazenil (1 mg/kg) blocked the anxiolytic-like effects of N/OFQ (10 pmol; i.c.v.), but not the anxiogenic effect elicited by nocistatin. Collectively, our findings suggest that the effects on anxiety elicited by pentylenetetrazol and diazepam can be counteracted or potentiated in the presence of N/OFQ and nocistatin. In addition, the effects on anxiety of N/OFQ, but not nocistatin, appear to be dependent on the benzodiazepine site of the GABAA receptor.  相似文献   

16.
Both the endogenous opioid peptide, dynorphin (1-13) (DYN), and morphine elicited dose-dependent feeding when microinjected into the ventral tegmental area of food-satiated rats. DYN was 50,000 times more potent than morphine in producing feeding. Whereas the ED50 for morphine was in the nanomole range, the ED50 for DYN was in the femtomole range. Administration of a narcotic antagonist attenuated DYN-elicited feeding. These data suggest a possible role for DYN in the VTA in opioid modulation of feeding behavior.  相似文献   

17.
马青平  韩济生 《生理学报》1991,43(2):189-194
The functional relations between nucleus accumbens and amygdala were investigated with intracranial microinjection, push-pull perfusion and radioimmunoassay in the rabbit. Microinjection of morphine 20 micrograms into nucleus accumbens increased the immunoreactive (ir) enkephalin content in amygdala perfusate from a control level of 0.43 +/- 0.43 fmol/0.5 ml (normal saline group) to 61.6 +/- 16.3 fmol/0.5 ml (P less than 0.01); and ir-beta-endorphin content from 1.88 +/- 0.98 fmol/0.5 ml to 4.80 +/- 1.12 fmol/0.5 ml (P less than 0.05). On the other hand, microinjection of morphine into amygdala increased the release of ir-enkephalins (2.41 +/- 1.41 vs 34.6 +/- 8.4, P less than 0.01) and ir-beta-endorphin (1.79 +/- 0.64 vs 5.58 +/- 1.39 P less than 0.05) in the perfusates of N. accumbens. The results indicate the existence of reciprocal reinforcement of opioid release between the two nuclei, which may take part in a putative positive feedback mechanism in the cerebral analgesic system.  相似文献   

18.
Nociceptin/orphanin FQ (=N/OFQ), the endogenous ligand of ORL1 receptor (=NOP), has been reported to induce, in rodents, after intracerebroventricular (i.c.v.) administration, anti-stress and anxiolytic effects. We have observed that the handling of mice followed by an i.c.v. injection of saline, induced a marked increase in the plasma corticosterone level (+250%) measured 30 minutes later. When N/OFQ was injected intracerebroventricularly, using a 1 microg dose, the increase in plasma corticosterone was significantly lower than in saline injected mice. N/OFQ(1-13)NH(2), known as a NOP receptor agonist, at the same 1 microg dose, also induced a lesser increase in plasma corticosterone level than a saline i.c.v. injection. The pseudopeptide [Phe(1)-psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)NH(2), defined either as an agonist or an antagonist of NOP receptor, at the 0.1 microg dose, behaved in a similar manner as N/OFQ, by decreasing the plasma corticosterone level. Finally, [Nphe(1)]N/OFQ(1-13)NH(2), although presumed to be a selective NOP receptor antagonist, also decreased the corticosterone level at the 0.1 microg dose. These observations suggest the implication of N/OFQ in the regulation of response to stress, through an action on the hypothalamo-pituitary-adrenocortical axis. Moreover, they evidence a similar effect of N/OFQ and N/OFQ(1-13)NH(2), but also of two other related peptides displaying antagonist properties on NOP receptors. These data suggest that several subtypes of N/OFQ receptors could exist.  相似文献   

19.
Kim KW  Chung YJ  Han JH  Woo RS  Park EY  Seul KH  Kim SZ  Cho KW  Kim SH 《Life sciences》2002,70(9):1065-1074
Nociceptin (N/OFQ) is a novel heptadecapeptide with an amino acid sequence similar to that of endogenous opioid peptide dynorphin A. Dynorphin have been reported to increase the secretion of atrial natriuretic peptide (ANP) via selective activation of kappa-opioid receptor in cultured atrial cardiocytes. The present study was designed to investigate the direct effect of N/OFQ on the ANP secretion in cultured neonatal rat cardiac myocytes via N/OFQ receptor (NOP) activation. The secretion of ANP from cultured neonatal cardiac myocytes was increased in terms of incubation time. N/OFQ, at a dose of 0.3, 1, 3, and 10 microM, caused increases in ANP secretion in a dose-dependent manner. The N/OFQ-induced ANP secretion was completely antagonized by antagonists of NOP, 1 microM each of [Phe1 (CH2-NH) Gly2] nociceptin (1-13)-NH2 ([FG]N/OFQ(1-13)NH2) or naloxone benzoylhydrazone. In contrast, naloxone (1 microM), the non-selective opioid receptor antagonist, did not alter ANP response to N/OFQ. N/OFQ at 3 microM inhibited basal and forskolin-stimulated cAMP production, which was partially antagonized with the pretreatment of [FG]N/OFQ(1-13)NH2. An increase in ANP secretion by N/OFQ was also partially blocked by the pretreatment of forskolin. Homologous competition studies in neonatal cardiomyocyte membranes revealed the presence of two distinct sites. The high affinity site (10.9 +/- 1.6 nM) was far less abundant than the low affinity site. Therefore, these results suggest that N/OFQ causes an increase in ANP secretion in cultured neonatal cardiac myocytes by decreasing cAMP through its binding sites.  相似文献   

20.
The influence of orphanin FQ/nociceptin (OFQ/N) on the morphine-withdrawal symptom was investigated. Withdrawal syndrome was induced in the morphine-dependent rats by an intraperitoneal (i.p.) injection of 2 mg/kg naloxone hydrochloride--an opioid receptors antagonist. Wet-dog shakes were used as a measure of the abstinence syndrome. Intraventricular injections of OFQ/N (5-20 microg/animal) caused significant inhibition of the withdrawal signs at doses between 15-20 microg, in the morphine-dependent rats. OFQ/N alone did not change behavior of the morphine-dependent animals. The obtained results indicate that OFQ/N can inhibit the morphine withdrawal symptoms induced by naloxone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号