首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stable inheritance of bacterial chromosomes and low copy number plasmids is ensured by accurate partitioning of replicated molecules between the daughter cells at division. Partitioning of the prophage of the temperate bacteriophage N15, which exists as a linear plasmid molecule with covalently closed ends, depends on the sop locus, comprising genes sopA and sopB, as well as four centromere sites in different regions of the N15 genome essential for replication and the control of lysogeny. We found that binding of SopB to the centromere could silence centromere-proximal promoters, presumably due to subsequent polymerization of SopB along the DNA. Close to the IR4 centromere site we identified a promoter, P59, which was able to drive the expression of phage late genes encoding structural proteins of virion. We found that, following binding to IR4, the N15 Sop proteins could induce repression of this promoter. The repression depended on SopB and was enhanced in the presence of SopA. Sop-dependent silencing of centromere-proximal promoters may control gene expression in phage N15, particularly preventing undesired expression of late genes in the N15 prophage. Thus, the phage N15 sop system not only ensures plasmid partitioning but is also involved in the genetic network controlling prophage replication and the maintenance of lysogeny.  相似文献   

3.
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularizes via cohensive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). Purified protelomerase alone processes circular and linear plasmid DNA containing the target site telRL to produce linear double-stranded DNA with covalently closed ends in vitro. N15 protelomerase is necessary for replication of the linear prophage through its action as a telomere-resolving enzyme. Replication of circular N15-based miniplasmids requires the only gene repA that encodes multidomain protein homologous to replication proteins of bacterial plasmids replicated by theta-mechanism, particularly, phage P4 alpha-replication protein. Replication of the N15 prophage is initiated at an internal ori site located within repA. Bidirectional replication results in formation of the circular head-to-head, tail-to-tail dimer molecule. Then the N15 protelomerase cuts both duplicated telomeres generating two linear plasmid molecules with covalently closed ends. The N15 prophage replication thus appears to follow the mechanism distinct from that employed by poxviruses and could serve as a model for other prokaryotic replicons with hairpin ends, and particularly, for linear plasmids and chromosomes of Borrelia burgdorferi.  相似文献   

4.
5.
The prophage of coliphage N15 is not integrated into the chromosome but exists as a linear plasmid molecule with covalently closed hairpin ends (telomeres). Upon infection the injected phage DNA circularizes via its cohesive ends. Then, a phage-encoded enzyme, protelomerase, cuts the circle and forms the hairpin telomeres. N15 protelomerase acts as a telomere-resolving enzyme during prophage DNA replication. We characterized the N15 replicon and found that replication of circular N15 miniplasmids requires only the repA gene, which encodes a multidomain protein homologous to replication proteins of bacterial plasmids replicated by a theta-mechanism. Replication of a linear N15 miniplasmid also requires the protelomerase gene and telomere regions. N15 prophage replication is initiated at an internal ori site located within repA and proceeds bidirectionally. Electron microscopy data suggest that after duplication of the left telomere, protelomerase cuts this site generating Y-shaped molecules. Full replication of the molecule and subsequent resolution of the right telomere then results in two linear plasmid molecules. N15 prophage replication thus appears to follow a mechanism that is distinct from that employed by eukaryotic replicons with this type of telomere and suggests the possibility of evolutionarily independent appearances of prokaryotic and eukaryotic replicons with covalently closed telomeres.  相似文献   

6.
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularises via cohesive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). We demonstrate that this enzyme acts in vivo on specific substrates, and show that it is necessary for replication of the linear prophage. We show that protelomerase is an end-resolving enzyme responsible for processing of replicative intermediates. Removal of protelomerase activity resulted in accumulation of replicative intermediates that were found to be circular head-to-head dimers. N15 protelomerase and its target site constitute a functional unit acting on other replicons independently of other phage genes; a mini-F or mini-P1 plasmid carrying this unit replicates as a linear plasmid with covalently closed ends. Our results suggest the following model of N15 prophage DNA replication. Replication is initiated at an internal ori site located close to the left end of plasmid DNA and proceeds bidirectionally. After replication of the left telomere, protelomerase cuts this sequence and forms two hairpin loops telL. After duplication of the right telomere (telR) the same enzyme resolves this sequence producing two linear plasmids. Alternatively, full replication of the linear prophage to form a circular head-to-head dimer may precede protelomerase-mediated formation of hairpin ends.  相似文献   

7.
The plasmid prophage N15: a linear DNA with covalently closed ends   总被引:1,自引:0,他引:1  
Coliphage N15 is a temperate bacteriophage whose prophage is a linear plasmid molecule with covalently closed ends (telomeres). The N15 prophage provided the first example of such DNA in prokaryotes and, up to now, it is the only known example of a linear plasmid in Escherichia coli. The linear N15 mature phage DNA has single-stranded cohesive ends. The phage and plasmid prophage DNAs are circularly permuted. The nucleotide structure of the telomere-forming site tel RL in phage DNA corresponds to the structures of the terminal hairpin loops. It suggests a unique mechanism for conversion of the circular phage DNA to the linear plasmid form, which is performed by the prokaryotic telomerase (protelomerase). The results of a comparison of the protelomerase with integrases lead us to suggest that these proteins may have evolved from a common ancestor. The mechanism of plasmid N15 replication is unknown. We propose that the protelomerase participates in linear plasmid replication, acting as a resolvase of replicative intermediates that are tail-to-tail linear dimers. The sequence analysis of the N15 DNA showed that it represents an evolutionary 'link' between plasmids F, P1, P4 and lambdoid bacteriophages.  相似文献   

8.
Ravin N  Lane D 《Journal of bacteriology》1999,181(22):6898-6906
A locus close to one end of the linear N15 prophage closely resembles the sop operon which governs partition of the F plasmid; the promoter region contains similar operator sites, and the two putative gene products have extensive amino acid identity with the SopA and -B proteins of F. Our aim was to ascertain whether the N15 sop homologue functions in partition, to identify the centromere site, and to examine possible interchangeability of function with the F Sop system. When expressed at a moderate level, N15 SopA and -B proteins partly stabilize mini-F which lacks its own sop operon but retains the sopC centromere. The stabilization does not depend on increased copy number. Likewise, an N15 mutant with most of its sop operon deleted is partly stabilized by F Sop proteins and fully stabilized by its own. Four inverted repeat sequences similar to those of sopC were located in N15. They are distant from the sop operon and from each other. Two of these were shown to stabilize a mini-F sop deletion mutant when N15 Sop proteins were provided. Provision of the SopA homologue to plasmids with a sopA deletion resulted in further destabilization of the plasmid. The N15 Sop proteins exert effective, but incomplete, repression at the F sop promoter. We conclude that the N15 sop locus determines stable inheritance of the prophage by using dispersed centromere sites. The SopB-centromere and SopA-operator interactions show partial functional overlap between N15 and F. SopA of each plasmid appears to interact with SopB of the other, but in a way that is detrimental to plasmid maintenance.  相似文献   

9.
N15 is the only bacteriophage of Escherichia coli known to lysogenize as a linear plasmid. Clear-plaque mutations lie in at least two regions of the 46-kb genome. We have cloned, sequenced, and characterized the primary immunity region, immB. This region contains a gene, cB, whose product shows homology to lambdoid phage repressors. The cB3 mutation confers thermoinducibility on N15 lysogens, consistent with CB being the primary repressor of N15. Downstream of cB lies the locus of N15 plasmid replication. Upstream of cB lies an operon predicted to encode two products: one homologous to the late repressor of P22 (Cro), the other homologous to the late antiterminator of phi 82 (Q). The Q-like protein is essential for phage development. We show that CB protein regulates the expression of genes that flank the cB gene by binding to DNA at symmetric 16-bp sites. Three sites are clustered upstream of cB and overlap a predicted promoter of the cro and Q-like genes as well as two predicted promoters of cB itself. Two sites downstream of cB overlap a predicted promoter of a plasmid replication gene, repA, consistent with the higher copy number of the mutant, N15cB3. The leader region of repA contains terminators in both orientations and a putative promoter. The organization of these regulatory elements suggests that N15 plasmid replication is controlled not only by CB but also by an antisense RNA and by a balance between termination and antitermination.  相似文献   

10.
A group of proteic toxin-antitoxin (TA) cassettes whose representatives are widely distributed among bacterial genomes has been identified. These cassettes occur in chromosomes, plasmids, bacteriophages, and noncomposite transposons, as well as in the SXT conjugative element of Vibrio cholerae. The following four homologous loci were subjected to detailed comparative studies: (i) tad-ata from plasmid pAMI2 of Paracoccus aminophilus (the prototype of this group), (ii) gp49-gp48 from the linear bacteriophage N15 of Escherichia coli, (iii) s045-s044 from SXT, and (iv) Z3230-Z3231 from the genomic island of enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Functional analysis revealed that all but one of these loci (Z3230-Z3231) are able to stabilize heterologous replicons, although the host ranges varied. The TA cassettes analyzed have the following common features: (i) the toxins are encoded by the first gene of each operon; (ii) the antitoxins contain a predicted helix-turn-helix motif of the XRE family; and (iii) the cassettes have two promoters that are different strengths, one which is located upstream of the toxin gene and one which is located upstream of the antitoxin gene. All four toxins tested are functional in E. coli; overexpression of the toxins (in the absence of antitoxin) results in a bacteriostatic effect manifested by elongation of bacterial cells and growth arrest. The toxins have various effects on cell viability, which suggests that they may recognize different intracellular targets. Preliminary data suggest that different cellular proteases are involved in degradation of antitoxins encoded by the loci analyzed.  相似文献   

11.
A fragment containing telRL site of bacteriophage N15 has been cloned in the vector plasmid pUC19. The nucleotide sequence of a small region from EcoRV-PstI fragment has been defined by Maxam-Gilbert technique. The analysis of the obtained sequence has shown the telRL site to be a nonideal palindrome (the size of 56 nucleotide ops) in which two nucleotide pairs differ in the positions 12 and 14 on both sides of the palindrome centre. The DNA region with alteration of purines and pyrimidines (GC) surrounded by AT-rich regions: 5'-ATTATACGCGCGTATAAT-3'--in the symmetry centre of palindrome is characteristic of the telRL site structure. This characteristic of the region may play a key role in recognition of the site by the specific enzyme at formation of linear prophage-plasmid during lysogenization.  相似文献   

12.
The Escherichia coli prophage N15 exists as a linear DNA molecule with covalently closed ends. Purified N15 protelomerase TelN is the only protein required to convert circular DNA substrates to the linear form with hairpin termini. Within the center of the telomerase occupancy site tos, the target for TelN is the 56-bp telRL consisting of the central 22-bp palindrome telO and two 14-bp flanking inverted sequence repetitions. DNase I footprinting of TelN-telRL complexes shows a segment of approximately 50 bp protected by TelN. Surface plasmon resonance studies demonstrate that this extended footprint is caused by two TelN molecules bound to telRL. Stable TelN-target DNA complexes are achieved with telRL; however, the additional sequences of tos stabilize the TelN-target complexes. TelO alone is not sufficient for specific stable complex formation. However, processing can occur, i.e. generation of the linear covalently closed DNA. Within the context of telRL, sequences of telO are involved in specific TelN-telRL complex formation, in processing itself, and/or in recognition of the processing site. The sequence of the central (CG)(3) within telO that is part of a 14-bp stretch proposed to have Z-DNA conformation is essential for processing but not for formation of specific TelN-telRL complexes. The concerted action of both TelN molecules at the target site is the basis for telomere resolution. Capturing of reaction intermediates demonstrates that TelN binds covalently to the 3'-phosphoryl of the cleaved strands.  相似文献   

13.
Bam35, a 15-kbp double-stranded DNA phage, infects Bacillus thuringiensis. Recently, sequencing of the related Bacillus cereus revealed a 15.1-kbp linear plasmid, pBClin15. We show that pBClin15 closely resembles Bam35 and demonstrate conversion of Bam35 to a prophage. This state is common, as several B. thuringiensis strains release Bam35-related viruses.  相似文献   

14.
K Tilly 《Journal of bacteriology》1991,173(20):6639-6642
The chromosome of the temperate bacteriophage N15 replicates as a linear plasmid with covalently closed ends (or hairpins) when it forms a lysogen. I found that, in contrast to the cases for lambda and the low-copy-number plasmids F and P1, both phage and plasmid replication of N15 are independent of the heat shock proteins DnaJ, DnaK, and GrpE.  相似文献   

15.
16.
17.
18.
19.
20.
The velocity with which a swarming colony of Serratia liquefaciens colonizes the surface of a suitable solid substratum was controlled by modulating the expression of the flhD master operon. In liquid medium, the stimulation of flhD expression resulted in filamentous, multinucleate, and hyperflagellated cells that were indistinguishable from swarm cells isolated from the edge of a swarm colony. Thus, expression of the flhD master operon appears to play a central role in the process of swarm cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号