首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
胞质动力蛋白(cytoplasmic dynein)是沿微管向负极运动的马达蛋白,参与细胞内多种物质的运输,运输的货物(cargo)小至信使RNA和蛋白质,大至细胞器和囊泡。动力蛋白只有与动力激活蛋白(dynactin)结合在一起时才有活性。动力激活蛋白是一个分子量为1.2 MDa的多亚基复合物,利用分子生物学和免疫电子显微镜技术,研究者已阐明了其亚基的组成信息,并得到了一个初步的结构模型。10年来,随着对各亚基功能研究的不断深入,研究者发现动力激活蛋白不仅可以增强动力蛋白在微管上的运动持续性,而且还可帮助其结合细胞内的其他成分。然而,动力激活蛋白与动力蛋白之间如何相互调节功能,动力激活蛋白作为接头蛋白如何控制货物在动力蛋白上的结合与解离,这两个核心问题尚未解决。本文就动力激活蛋白的亚基组成及其辅助动力蛋白发挥功能等研究成果进行总结,并对以后的研究趋势进行展望。  相似文献   

2.
动力蛋白(dynamin)是一类具有可被微管激活的GTP酶活性的新型马达蛋白,被证明在动物细胞受体介导的内吞小泡的形成、突触小泡再循环及高尔基体的囊泡运输中起关键作用.近几年,一些植物细胞也被发现有动力蛋白类似物.本研究通过分子量鉴定和免疫印迹法证明萱草(Hemerocallis fulva L.)花粉中存在动力蛋白,其分子量为100 kD;经过高度纯化的花粉动力蛋白仍具有GTPase活性,且可被牛脑微管激活1.64倍;电子显微镜观察结果表明,花粉动力蛋白可自我组装成环状结构.  相似文献   

3.
萱草花粉动力蛋白的分离与特性   总被引:2,自引:0,他引:2  
动力蛋白(dynamin)是一类具有可被微管激活的GTP酶活性的新型马达蛋白,被证明在动物细胞受体介导的内吞小泡的形成,突触小泡再循环及高尔基体的囊泡运输中起关键作用。近几年,一些植物细胞也被发现有动力蛋白类似物。本研究通过分子量鉴定和免疫印迹法证明萱草(Hemerocallis fulva L.)花粉中存在动力蛋白,其分子量为100kD。经过高度纯化的花粉动甩具有GTPase活性,且可被牛脑微管激活1.64倍;电子显微镜表明,花粉动力蛋白可自我组装成环状结构。  相似文献   

4.
真核翻译起始因子 4A(eukaryoticinitiationfactor 4A ,eIF 4A)是DEAD盒蛋白家族的ATP依赖性的RNA解旋酶类中的一个原型成员 .它在真核细胞的蛋白质合成的起始过程中起着关键性作用 .通过PCR扩增和放射探针杂交相结合的方法筛选食蟹猴疟原虫 (Plasmodiumcynomolgi)的cDNA文库 ,克隆了一个eIF 4A同源蛋白的完整cDNA序列 ,命名为CH1F .CH1F全长 1 75 3bp ,包含一个1 1 97bp的完整阅读框 ,推测编码一个由 398个氨基酸组成的蛋白 .对CH1F的蛋白序列用BlastP进行搜索和分析 ,提示它应该是DEAD盒家族的一个eIF 4A同源蛋白 ;用DNAStar将其与许多典型的DEAD盒蛋白序列进行比对分析 ,结果显示 :比起其它的DEAD盒蛋白 ,它与eIF 4A或eIF 4A的同源蛋白具有更高的同源性和更多序列上的相似结构域 .将包含完整阅读框的片段亚克隆进表达载体pET 2 8a (+) ,在大肠杆菌DH5α中表达 ,产生的融合蛋白大小在 4 5kD左右 .对该融合蛋白进行纯化、重新折叠和初步鉴定 .ATP酶活性检测显示 ,该融合蛋白只有很低的ATP酶活性 ,而且它的ATP酶活性似乎不依赖于核酸底物 .对这一检测结果给出 3种可能的原因 .这一检测结果与根据序列分析得到的推论———CH1F蛋白可能是一个eIF 4A并不矛盾  相似文献   

5.
非晶状体βγ晶状体蛋白与三叶因子蛋白复合物(βγ-CAT)是从大蹼铃蟾(Bombina maxima)皮肤分泌物中分离的分子量为72 kDa的天然蛋白复合物.本研究通过激光共聚焦显微镜和Westem blot分析βγ-CAT在人脐静脉内皮细胞(HUVEC)中的细胞核转运机制,以及βγ-CAT对多株肿瘤细胞(HCT116,HT29,A375,Hela,THP-1等)的细胞毒效应.结果表明:βγ-CAT的α亚基中含有典型的GTP/ATPase的保守结构模体Walker A和Walker B,体外检测到βγ-CAT具有GTP/ATP水解酶和GTP/ATP结合活性.在细胞核转运过程中,βγ-CAT的α亚基和β亚基参与形成约150kDa含有泛素化修饰信号的大分子复合物,且泛素化修饰信号和βγ-CAT的α亚基和β亚基共定位于细胞内和融合于细胞核区域的转运囊泡小体中.βγ-CAT能够选择性的杀伤肿瘤细胞,诱导肿瘤细胞脱落和发生凋亡.上述结果为进一步深入研究阡βγ-CAT的细胞核转运和调节细胞功能的分子作用机制提供思路和线索.  相似文献   

6.
Bloom综合征解旋酶(BLM)是RecQ家族DNA解旋酶中的一个重要成员,参与了DNA复制、修复、转录、重组以及端粒的维持等细胞代谢过程,在维持染色体的稳定性中具有重要作用.BLM解旋酶的突变可导致Bloom综合征.Bloom综合征是一种罕见隐性常染色体遗传疾病,患者遗传不稳定,并易患多种类型癌症.洛美沙星(LMX)可以抑制细胞内多种酶,并通过结合DNA干扰DNA代谢,从而治疗多种疾病,但是其具体的作用机理还未完全清楚.运用荧光偏振技术和自由磷检测技术,研究了LMX对BLM642~1290解旋酶DNA结合活性、解链活性和ATP酶活性的影响.运用荧光及紫外吸收光谱法研究了LMX与解旋酶结合的结合常数、结合位点数、作用力类型、结合距离等参数.结果表明,LMX与解旋酶之间能自发进行反应,两种分子有一个结合位点,通过静电引力和疏水作用力形成稳定的BLM-LMX复合物,且解旋酶的内源荧光被LMX静态猝灭,主要原因是非辐射能量转移.在这一过程中,LMX能抑制解旋酶的解链活性和ATP酶活性,而促进解旋酶的DNA结合活性.LMX对BLM解旋酶生物学活性影响的机理可能是LMX使解旋酶通过别构机制影响其ATP酶活性,并使酶的构象维持在较低解链活性的状态,通过抑制ATP催化水解与解链过程的偶联和阻止解旋酶的易位,从而抑制其解链.LMX能够促进解旋酶的DNA结合活性,可能是因为其C-6和C-7上的取代功能基团可以增加酶活力,以及增强药物、酶和DNA的结合,从而形成药物-酶-DNA复合物.这些结果为研究以DNA解旋酶为药物靶标的分子机理和理解喹诺酮类药物的作用机理奠定相关理论基础.  相似文献   

7.
Bompadre SG  Hwang TC 《生理学报》2007,59(4):431-442
囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是一种Cl^-通道,属于ATP结合(ATP-binding cassette,ABC)转运体超家族。CFTR功能缺陷是高加索人种中普遍存在的致死性常染色体隐性遗传疾病囊性纤维化(cystic fibrosis,CF)发生的主要原因。这种疾病患者各组织上皮细胞内Cl^-转运失调。目前,与CF相关的不同突变超过1400种。CFTR调节(regulatory,R)域负责调控,核苷酸结合域(nucleotide-binding domains,NBDs)NBD1和NBD2负责ATP结合和水解门控。近期研究发现CFFR的NBDs与其它ABC蛋白一样可以二聚化。二聚化过程中,NBD1和NBD2首-尾相连,一个NBD上的WalkerA和B模块与另一个NBD提供的标签序列(signature sequence)形成ATP结合袋(ATP-binding pockets,ABPs)ABP1和ABP2。ABPs中与ATP结合相关的氨基酸突变实验揭示,ABP1和ABP2在CFTR的ATP依赖门控中发挥不同作用。ABP2由NBD2上的WalkA和B模块与NBD1提供的标签序列形成,它与ATP结合催化通道开放,而ABP1单独与ATP结合不能促进通道开放,只能稳定通道构象。有一些CFrR突变相关疾病的特征就是门控失调,进一步深入研究CFTR的NBD1和NBD2如何通过相互作用而达到通道门控,将为药理学研究提供更多所需的机制信息,有利于为CF治疗的药物设计铺平道路。  相似文献   

8.
染色质重塑复合物相关基因在癌症中频繁突变,这种现象逐渐引起研究者的重视。然而,染色质重塑活动如何引起癌症发生,对此机理研究甚少。ARID1A是SWl/SNF(BRG1相关因子)染色质重塑复合物中的一个亚基,具有DNA结合活性,可以与富含AT的DNA序列特异性结合。近来基因组测序发现,ARID1A在卵巢癌、肝癌、胃癌、乳腺癌等肿瘤中频繁发生突变,这些突变导致ARID1A在肿瘤中表达降低,表明ARID1A是个潜在的抑癌基因。该文将针对ARID1A在各种癌症中的缺失及失活机制、ARID1A的生物学功能和潜在抑癌机理以及与,临床预后之间关系等方面做一综述,以期为肿瘤诊断、治疗提供新思路。  相似文献   

9.
旨在围绕大肠杆菌DH10B(Escherichia coli DH10B)中氮代谢调节蛋白GlnG与施氏假单胞菌A1501(Pseudomonas stutzeriA1501)中氮代谢调节蛋白NtrC在一般氮代谢调控网络中是否存在功能互补展开研究。利用DH10B菌的glnG基因回补A1501菌的ntrC突变株,以及A1501菌的ntrC基因回补DH10B菌的glnG突变株,对所获得的功能互补株分别展开生理生化表型测定。结果表明,在以硝酸钾或尿素为唯一氮源的培养条件下,DH10B glnG基因可以回补A1501ntrC突变株的氮源利用能力,并且部分恢复ntrC突变株的固氮酶活性(约为野生型A1501固氮酶活性的45%);与DH10B glnG突变株相比,A1501菌的ntrC基因回补了DH10B glnG突变株以精氨酸为唯一氮源的生长能力。以上结果说明DH10B菌的GlnG蛋白与A1501菌的NtrC蛋白不仅在进化关系上紧密联系而且在所测试的氮代谢途径中存在功能互补。  相似文献   

10.
DNA双链断裂修复缺陷易导致细胞基因组稳定性失衡、细胞发生癌变或死亡。真核生物主要通过同源重组和非同源末端连接两条途径来修复双链断裂。近年来发现多种ATP依赖型的染色质重塑蛋白复合物,包括RSC、INO80、Fun30、SWI/SNF和SWR1,直接参与了DNA双链断裂修复过程。它们主要通过调控DNA损伤检查点激活、断裂末端剪切及组蛋白H2AZ-H2B/H2A-H2B置换等重要步骤发挥功能。现以酿酒酵母中的研究为重点,综述主要ATP依赖型染色质重塑复合物在DNA双链断裂修复中的功能及作用机制。  相似文献   

11.
Dynactin is a multisubunit complex that plays an accessory role in cytoplasmic dynein function. Overexpression in mammalian cells of one dynactin subunit, dynamitin, disrupts the complex, resulting in dissociation of cytoplasmic dynein from prometaphase kinetochores, with consequent perturbation of mitosis (Echeverri, C.J., B.M. Paschal, K.T. Vaughan, and R.B. Vallee. 1996. J. Cell Biol. 132:617–634). Based on these results, dynactin was proposed to play a role in linking cytoplasmic dynein to kinetochores and, potentially, to membrane organelles. The current study reports on the dynamitin interphase phenotype. In dynamitin-overexpressing cells, early endosomes (labeled with antitransferrin receptor), as well as late endosomes and lysosomes (labeled with anti–lysosome-associated membrane protein-1 [LAMP-1]), were redistributed to the cell periphery. This redistribution was disrupted by nocodazole, implicating an underlying plus end–directed microtubule motor activity. The Golgi stack, monitored using sialyltransferase, galactosyltransferase, and N-acetylglucosaminyltransferase I, was dramatically disrupted into scattered structures that colocalized with components of the intermediate compartment (ERGIC-53 and ERD-2). The disrupted Golgi elements were revealed by EM to represent short stacks similar to those formed by microtubule-depolymerizing agents. Golgi-to-ER traffic of stack markers induced by brefeldin A was not inhibited by dynamitin overexpression. Time-lapse observations of dynamitin-overexpressing cells recovering from brefeldin A treatment revealed that the scattered Golgi elements do not undergo microtubule-based transport as seen in control cells, but rather, remain stationary at or near their ER exit sites. These results indicate that dynactin is specifically required for ongoing centripetal movement of endocytic organelles and components of the intermediate compartment. Results similar to those of dynamitin overexpression were obtained by microinjection with antidynein intermediate chain antibody, consistent with a role for dynactin in mediating interactions of cytoplasmic dynein with specific membrane organelles. These results suggest that dynamitin plays a pivotal role in regulating organelle movement at the level of motor–cargo binding.  相似文献   

12.
Dynamitin is a commonly used inhibitor of cytoplasmic dynein-based motility in living cells. Dynamitin does not inhibit dynein directly but instead acts by causing disassembly of dynactin, a multiprotein complex required for dynein-based movement. In dynactin, dynamitin is closely associated with the subunits p150(Glued) and p24, which together form the shoulder and projecting arm structures of the dynactin molecule. In this study, we explore the way in which exogenous dynamitin effects dynactin disruption. We find that pure, recombinant dynamitin is an elongated protein with a strong propensity for self-assembly. Titration experiments reveal that free dynamitin binds dynactin before it causes release of subunits. When dynamitin is added to dynactin at an equimolar ratio of exogenous dynamitin subunits to endogenous dynamitin subunits (1x= 4 mol of exogenous dynamitin per mole of dynactin), exogenous dynamitin exchanges with endogenous dynamitin, and partial release of p150(Glued) is observed. When added in vast excess (> or =25x; 100 mol of exogenous dynamitin per mole of dynactin), recombinant dynamitin causes complete release of both p150(Glued) subunits, two dynamitins and one p24, but not other dynactin subunits. Our data suggest that dynamitin mediates disruption of dynactin by binding to endogenous dynamitin subunits. This binding destabilizes the shoulder structure that links the p150(Glued) arm to the Arp1 filament and leads to subunit release.  相似文献   

13.
The multisubunit protein, dynactin, is a critical component of the cytoplasmic dynein motor machinery. Dynactin contains two distinct structural domains: a projecting sidearm that interacts with dynein and an actin-like minifilament backbone that is thought to bind cargo. Here, we use biochemical, ultrastructural, and molecular cloning techniques to obtain a comprehensive picture of dynactin composition and structure. Treatment of purified dynactin with recombinant dynamitin yields two assemblies: the actin-related protein, Arp1, minifilament and the p150(Glued) sidearm. Both contain dynamitin. Treatment of dynactin with the chaotropic salt, potassium iodide, completely depolymerizes the Arp1 minifilament to reveal multiple protein complexes that contain the remaining dynactin subunits. The shoulder/sidearm complex contains p150(Glued), dynamitin, and p24 subunits and is ultrastructurally similar to dynactin's flexible projecting sidearm. The dynactin shoulder complex, which contains dynamitin and p24, is an elongated, flexible assembly that may link the shoulder/sidearm complex to the Arp1 minifilament. Pointed-end complex contains p62, p27, and p25 subunits, plus a novel actin-related protein, Arp11. p62, p27, and p25 contain predicted cargo-binding motifs, while the Arp11 sequence suggests a pointed-end capping activity. These isolated dynactin subdomains will be useful tools for further analysis of dynactin assembly and function.  相似文献   

14.
Dynactin is a multiprotein complex that works with cytoplasmic dynein and other motors to support a wide range of cell functions. It serves as an adaptor that binds both dynein and cargoes and enhances single-motor processivity. The dynactin subunit dynamitin (also known as p50) is believed to be integral to dynactin structure because free dynamitin displaces the dynein-binding p150Glued subunit from the cargo-binding Arp1 filament. We show here that the intrinsically disordered dynamitin N-terminus binds to Arp1 directly. When expressed in cells, dynamitin amino acids (AA) 1–87 causes complete release of endogenous dynamitin, p150, and p24 from dynactin, leaving behind Arp1 filaments carrying the remaining dynactin subunits (CapZ, p62, Arp11, p27, and p25). Tandem-affinity purification–tagged dynamitin AA 1–87 binds the Arp filament specifically, and binding studies with purified native Arp1 reveal that this fragment binds Arp1 directly. Neither CapZ nor the p27/p25 dimer contributes to interactions between dynamitin and the Arp filament. This work demonstrates for the first time that Arp1 can directly bind any protein besides another Arp and provides important new insight into the underpinnings of dynactin structure.  相似文献   

15.
Dynactin is a multi-subunit complex that serves as a critical cofactor of the microtubule motor cytoplasmic dynein. We previously identified dynactin in the nerve growth cone. However, the function of dynactin in the growth cone is still unclear. Here we show that dynactin in the growth cone is required for constant forward movement of the growth cone. Chromophore-assisted laser inactivation (CALI) of dynamitin, a dynactin subunit, within the growth cone markedly decreases the rate of growth cone advance. CALI of dynamitin in vitro dissociates another dynactin subunit, p150Glued, from dynamitin. These results indicate that dynactin, especially the interaction between dynamitin and p150Glued, plays an essential role in growth cone advance.  相似文献   

16.
Amaro IA  Costanzo M  Boone C  Huffaker TC 《Genetics》2008,178(2):703-709
Stu1 is the Saccharomyces cerevisiae member of the CLASP family of microtubule plus-end tracking proteins and is essential for spindle formation. A genomewide screen for gene deletions that are lethal in combination with the temperature-sensitive stu1-5 allele identified ldb18Delta. ldb18Delta cells exhibit defects in spindle orientation similar to those caused by a block in the dynein pathway. Consistent with this observation, ldb18Delta is synthetic lethal with mutations affecting the Kar9 spindle orientation pathway, but not with those affecting the dynein pathway. We show that Ldb18 is a component of dynactin, a complex required for dynein activity in yeast and mammalian cells. Ldb18 shares modest sequence and structural homology with the mammalian dynactin component p24. It interacts with dynactin proteins in two-hybrid and co-immunoprecipitation assays, and comigrates with them as a 20 S complex during sucrose gradient sedimentation. In ldb18Delta cells, the interaction between Nip100 (p150(Glued)) and Jnm1 (dynamitin) is disrupted, while the interaction between Jnm1 and Arp1 is not affected. These results indicate that p24 is required for attachment of the p150(Glued) arm to dynamitin and the remainder of the dynactin complex. The genetic interaction of ldb18Delta with stu1-5 also supports the notion that dynein/dynactin helps to generate a spindle pole separating force.  相似文献   

17.
After fusion of the viral envelope with the plasma membrane, herpes simplex virus type 1 (HSV1) capsids are transported along microtubules (MTs) from the cell periphery to the nucleus. The motor ATPase cytoplasmic dynein and its multisubunit cofactor dynactin mediate most transport processes directed toward the minus-ends of MTs. Immunofluorescence microscopy experiments demonstrated that HSV1 capsids colocalized with cytoplasmic dynein and dynactin. We blocked the function of dynein by overexpressing the dynactin subunit dynamitin, which leads to the disruption of the dynactin complex. We then infected such cells with HSV1 and measured the efficiency of particle binding, virus entry, capsid transport to the nucleus, and the expression of immediate-early viral genes. High concentrations of dynamitin and dynamitin-GFP reduced the number of viral capsids transported to the nucleus. Moreover, viral protein synthesis was inhibited, whereas virus binding to the plasma membrane, its internalization, and the organization of the MT network were not affected. We concluded that incoming HSV1 capsids are propelled along MTs by dynein and that dynein and dynactin are required for efficient viral capsid transport to the nucleus.  相似文献   

18.
Cytoplasmic dynein is a microtubule-associated motor that utilizes ATP hydrolysis to conduct minus-end directed transport of various organelles. Dynactin is a multisubunit complex that has been proposed to both link dynein with cargo and activate dynein motor function. The mechanisms by which dynactin regulates dynein activity are not clear. In this study, we examine the role of dynactin in regulating dynein ATPase activity. We show that dynein-microtubule binding and ATP-dependent release of dynein from microtubules are reduced in dynactin null mutants, Deltaro-3 (p150(Glued)) and Deltaro-4 (Arp1), relative to wild-type. The dynein-microtubule binding activity, but not the ATP-dependent release of dynein from microtubules, is restored by in vitro mixing of extracts from dynein and dynactin mutants. Dynein produced in a Deltaro-3 mutant has approximately 8-fold reduced ATPase activity relative to dynein isolated from wild-type. However, dynein ATPase activity from wild-type is not reduced when dynactin is separated from dynein, suggesting that dynein produced in a dynactin mutant is inactivated. Treatment of dynein isolated from the Deltaro-3 mutant with lambda protein phosphatase restores the ATPase activity to near wild-type levels. The reduced dynein ATPase activity observed in dynactin null mutants is mainly due to altered affinity for ATP. Radiolabeling experiments revealed that low molecular mass proteins, particularly 20- and 8-kDa proteins, that immunoprecipitate with dynein heavy chain are hyperphosphorylated in the dynactin mutant and dephosphorylated upon lambda protein phosphatase treatment. The results suggest that cytoplasmic dynein ATPase activity is regulated by dynactin-dependent phosphorylation of dynein light chains.  相似文献   

19.
Dynactin is a highly conserved, multiprotein complex that works in conjunction with microtubule-based motors to power a variety of intracellular motile events. Dynamitin (p50) is a core element of dynactin structure. In the present study, we use targeted mutagenesis to evaluate how dynamitin's different structural domains contribute to its ability to self-associate, interact with dynactin and assemble into a complex with its close binding partner, p24. We show that these interactions involve three distinct structural elements: (i) a previously unidentified dimerization motif in the N-terminal 100 amino acids, (ii) an α-helical motif spanning aa 106–162 and (iii) the C-terminal half of the molecule (aa 213–406), which is predicted to fold into an antiparallel α-helix bundle. The N-terminal half of dynamitin by itself is sufficient to disrupt dynactin, although very high concentrations are required. The ability of mutations in dynamitin's interaction domains to disrupt dynactin in vitro was found to correlate with their inhibitory effects when expressed in cells. We determined that the dynactin subunit, p24, governs dynamitin oligomerization by binding dynamitin along its length. This suppresses aberrant multimerization and drives formation of a protein complex that is identical to the native dynactin shoulder.  相似文献   

20.
We present evidence that vimentin intermediate filament (IF) motility in vivo is associated with cytoplasmic dynein. Immunofluorescence reveals that subunits of dynein and dynactin are associated with all structural forms of vimentin in baby hamster kidney-21 cells. This relationship is also supported by the presence of numerous components of dynein and dynactin in IF-enriched cytoskeletal preparations. Overexpression of dynamitin biases IF motility toward the cell surface, leading to a perinuclear clearance of IFs and their redistribution to the cell surface. IF-enriched cytoskeletal preparations from dynamitin-overexpressing cells contain decreased amounts of dynein, actin-related protein-1, and p150Glued relative to controls. In contrast, the amount of dynamitin is unaltered in these preparations, indicating that it is involved in linking vimentin cargo to dynactin. The results demonstrate that dynein and dynactin are required for the normal organization of vimentin IF networks in vivo. These results together with those of previous studies also suggest that a balance among the microtubule (MT) minus and plus end-directed motors, cytoplasmic dynein, and kinesin are required for the assembly and maintenance of type III IF networks in interphase cells. Furthermore, these motors are to a large extent responsible for the long recognized relationships between vimentin IFs and MTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号