首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An expressed sequence tag database of the freshwater fish parasite, Ichthyophthirius multifiliis (Ciliophora) was analyzed to seek for proteases potentially involved in the invasion and degradation of host tissues during infection. The translation of the database revealed two cathepsin L cysteine proteases (Icp1 and Icp2) of the C1A peptidase subfamily. The analysis of Icp1 and Icp2 sequences suggested that both proteases would be synthesized as preproproteins, with a mature domain of 27.9 and 22.8 kDa, respectively. Their expression level was determined in the trophont parasitic stage, in the tomont reproductive stage, and in the theront infective stage by real-time RT-PCR. ICP1 and ICP2 were significantly upregulated in trophont and theront stages in comparison with the tomont stage. Mature peptides of Icp1 and Icp2 were identified in crude extracts of I. multifiliis trophonts by LC-MS/MS. Zymograms showed three to seven activity bands at the optimum pH of cathepsin L cysteine proteases. Two bands displaying cysteine protease activity were identified by inhibition with E-64. They represented the major proteolytic activity of the trophont stage at pH 5-7, suggesting that cysteine proteases play an important role in the infection process.  相似文献   

3.
There is limited information on the biology and pathogenesis of Leishmania aethiopica, causative agent of cutaneous leishmaniasis (CL) in Ethiopia. In this study we have identified and characterized two cathepsin L-like cysteine protease genes, Laecpa and Laecpb, from L. aethiopica. The predicted amino acid sequence of Laecpa and Laecpb is more than 75% identical with homologous cathepsin L-like cysteine protease genes of other Leishmania species and less than 50% identical with human cathepsin L. Laecpa is expressed predominantly in the stationary, and to a lower level, during the amastigote stage while Laecpb is specifically expressed in the stationary stage of L. aethiopica development. Phylogenetic analysis showed that the two genes are grouped into separate clades which are the result of gene duplication. The isolation of these genes will be useful in developing Leishmania species specific diagnostics for molecular epidemiological studies and serves as a first step to study the role of cysteine proteases in L. aethiopica pathogenesis.  相似文献   

4.
Cathepsin L proteases secreted by the helminth pathogen Fasciola hepatica have functions in parasite virulence including tissue invasion and suppression of host immune responses. Using proteomics methods alongside phylogenetic studies we characterized the profile of cathepsin L proteases secreted by adult F. hepatica and hence identified those involved in host-pathogen interaction. Phylogenetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) and two clades specific to infective juvenile stages (Clades 3 and 4). Consistent with these observations our proteomics studies identified representatives from Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F. hepatica secretory products. Clades 1 and 2 account for 67.39 and 27.63% of total secreted cathepsin Ls, respectively, suggesting that their expansion was positively driven and that these proteases are most critical for parasite survival and adaptation. Sequence comparison studies revealed that the expansion of cathepsin Ls by gene duplication was followed by residue changes in the S2 pocket of the active site. Our biochemical studies showed that these changes result in alterations in substrate binding and suggested that the divergence of the cathepsin L family produced a repertoire of enzymes with overlapping and complementary substrate specificities that could cleave host macromolecules more efficiently. Although the cathepsin Ls are produced as zymogens containing a prosegment and mature domain, all secreted enzymes identified by MS were processed to mature active enzymes. The prosegment region was highly conserved between the clades except at the boundary of prosegment and mature enzyme. Despite the lack of conservation at this section, sites for exogenous cleavage by asparaginyl endopeptidases and a Leu-Ser[downward arrow]His motif for autocatalytic cleavage by cathepsin Ls were preserved.  相似文献   

5.
6.
Various types of proteinases are implicated in the malignant progression of human and animal tumors. Proteinase inhibitors may therefore be useful as therapeutic agents in anti-invasive and anti-metastatic treatment. The aims of this study were (1) to estimate the relative importance of proteinases in B16 cell invasion in vitro using synthetic, class-specific proteinase inhibitors and (2) to assess the inhibitory effect of some naturally occurring cysteine proteinase inhibitors. Serine proteinase inhibitor reduced invasiveness by up to 24%, whereas inhibition of aspartic proteinases reduced invasion by 11%. Synthetic inhibitors of cysteine proteinases markedly impaired invasion: cathepsin B inhibitors, particularly Ca-074Me, inhibited invasion from 20-40%, whereas cathepsin L inhibitor Clik 148 reduced invasion by 11%. The potato cysteine proteinase inhibitor PCPI 8.7 inhibited invasion by 21%, whereas another potato inhibitor, PCPI 6.6, and the mushroom cysteine proteinase inhibitor clitocypin had no effects. As the inhibitors that inhibited cathepsin B were in general more efficient at impairing the invasiveness, we conclude that of the two cysteine proteinases, cathepsin B plays a more important role than cathepsin L in murine melanoma cell invasion.  相似文献   

7.
Cathepsin L family, an important cysteine protease found in lysosomes, is categorized into cathepsins B, F, H, K, L, S, and W in vertebrates. This categorization is based on their sequence alignment and traditional functional classification, but the evolutionary relationship of family members is unclear. This study determined the evolutionary relationship of cathepsin L family genes in vertebrates through phylogenetic construction. Results showed that cathepsins F, H, S and K, and L and V were chronologically diverged. Tandem-repeat duplication was found to occur in the evolutionary history of cathepsin L family. Cathepsin L in zebrafish, cathepsins S and K in xenopus, and cathepsin L in mice and rats underwent evident tandem-repeat events. Positive selection was detected in cathepsin L-like members in mice and rats, and amino acid sites under positive selection pressure were calculated. Most of these sites appeared at the connection of secondary structures, suggesting that the sites may slightly change spatial structure. Severe positive selection was also observed in cathepsin V (L2) of primates, indicating that this enzyme had some special functions. Our work provided a brief evolutionary history of cathepsin L family and differentiated cathepsins S and K from cathepsin L based on vertebrate appearance. Positive selection was the specific cause of differentiation of cathepsin L family genes, confirming that gene function variation after expansion events was related to interactions with the environment and adaptability.  相似文献   

8.
The protozoan parasite Toxoplasma gondii relies on post-translational modification, including proteolysis, of proteins required for recognition and invasion of host cells. We have characterized the T. gondii cysteine protease cathepsin L (TgCPL), one of five cathepsins found in the T. gondii genome. We show that TgCPL is the primary target of the compound morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl (LHVS), which was previously shown to inhibit parasite invasion by blocking the release of invasion proteins from microneme secretory organelles. As shown by fluorescently labeled LHVS and TgCPL-specific antibodies, TgCPL is associated with a discrete vesicular structure in the apical region of extracellular parasites but is found in multiple puncta throughout the cytoplasm of intracellular replicating parasites. LHVS fails to label cells lacking TgCPL due to targeted disruption of the TgCPL gene in two different parasite strains. We present a structural model for the inhibition of TgCPL by LHVS based on a 2.0 Å resolution crystal structure of TgCPL in complex with its propeptide. We discuss possible roles for TgCPL as a protease involved in the degradation or limited proteolysis of parasite proteins involved in invasion.The recent completion of many genome-sequencing projects has allowed an unprecedented view of the complete set of proteases in biologically or medically important organisms (1). Of the five mechanistically distinct catalytic types (serine, cysteine, aspartyl, metallo, and threonine), cysteine proteases are the second largest group. In particular, cysteine proteases of the C1 papain family of “lysosomal” cathepsins have garnered intense scrutiny because of their key roles in cancer, embryogenesis, heart disease, osteoporosis, immunity, and infectious diseases. Microbial cathepsins, particularly those expressed by parasites, have also attracted attention recently because of their potential as targets for treatment of helminthic and protozoal infections (2, 3).The protozoan parasite Toxoplasma gondii infects virtually all warm-blooded animals and approximately one-third of the human population worldwide. Although most Toxoplasma infections are benign, severe opportunistic disease is seen in immunodeficient or immunosuppressed individuals or congenitally infected babies. T. gondii is an obligate intracellular organism that uses an actin-myosin-based motility system to actively invade nucleated host cells (4, 5). The parasite secretes a variety of proteins during and after cell invasion that contribute to recognition of the host cell, formation of an adhesive “moving” junction, modulation of host signaling pathways and gene expression, and remodeling of the parasitophorous vacuole in preparation for parasite growth (6, 7). Although it has been known for some time that many Toxoplasma secretory proteins are post-translationally modified by proteolysis before and/or after secretion, in most cases, the consequences of proteolysis or the specific protease involved are unclear.Analysis of the T. gondii genome indicates the existence of five genes encoding cathepsin proteases of the papain family, including three cathepsin C proteases (TgCPC1, TgCPC2, and TgCPC3), one cathepsin B (Toxopain-1 or TgCPB), and one cathepsin L (TgCPL). TgCPC1 and TgCPC2 are secreted into the parasitophorous vacuole after parasite invasion and are proposed to function in nutrient acquisition (8). TgCPC3 is not expressed in tachyzoites, a rapidly dividing form of the parasite that is most commonly studied in the laboratory. TgCPB is localized in club-shaped invasion organelles called rhoptries, where it may act as a maturase for rhoptry proteins involved in modulation of the host cell (9). TgCPL is predicted to be a type II membrane protein, and a recent report by Reed and co-workers (10) showed that it has enzymatic activity with a low pH optimum and that it occupies a membrane-bound structure in the apical region of extracellular parasites. This same study revealed that T. gondii expresses two endogenous inhibitors of cysteine proteases (TgICP1 and TgICP2), but their role in regulating parasite or host cysteine proteases remains to be determined. Similar inhibitors are expressed by other parasites, including Trypanosoma cruzi, that act on host proteases, and the crystal structure of an inhibitor (chagasin)-enzyme (human cathepsin L) complex was recently reported (11).In a recent study, we screened a small library of cathepsin and proteasome inhibitors and identified two compounds that substantially impair Toxoplasma cell invasion (12). The most effective of these compounds, morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl (LHVS),2 inhibited invasion with a 50% inhibitory concentration (IC50) of ∼10 μm. Further analysis revealed that LHVS blocks parasite attachment and gliding motility by impairing the release of proteins from a distinct set of apical secretory organelles called micronemes. Here we definitively show, using a variety of biochemical, genetic, and structural approaches, that TgCPL is the primary target of LHVS in the parasite.  相似文献   

9.
In social aphids of the genus Tuberaphis a cysteine protease gene of the family cathepsin B exhibits soldier-specific expression and intestinal protease production. The product is orally excreted and injected by soldier nymphs into natural enemies, thereby exerting an insecticidal activity. In an attempt to gain insights into when and how the novel venomous protease for the altruistic caste has evolved, we investigated the soldier-specific type (S-type) and nonspecific type (N-type) cathepsin B genes from social and nonsocial aphids. All the social aphids examined, representing the genera Tuberaphis, Astegopteryx, and Cerataphis, possessed both the S-type and N-type genes. Phylogenetically distant nonsocial aphids also possessed cathepsin B genes allied to the S-type and the N-type, indicating the evolutionary origin of these genes in the common ancestor of extant aphids. In Tuberaphis species the S-type genes exhibited significant soldier-specific expression and accelerated molecular evolution whereas the N-type genes did not. In Astegopteryx and Cerataphis species, meanwhile, both the S-type and N-type genes exhibited neither remarkable soldier-specific expression nor accelerated molecular evolution. These results suggest that the S-type gene acquired the soldier-specific expression and the venom function after divergence of the genus Tuberaphis. On the structural model of the S-type protease of Tuberaphis styraci the accelerated molecular evolution was associated with the molecular surface rather than the catalytic cleft, suggesting that the venom activity was probably acquired by relatively minor modifications on the molecular surface rather than by generation of a novel active site. In Cerataphis jamuritsu the S-type gene was, although containing a stop codon, structurally almost intact and still transcribed, suggesting recent pseudogenization of the gene copy and possible relevance to relaxed functional constraint in the highly multiplied protease gene family. On the basis of these results we suggest that the massive amplification in aphid cathepsin B genes might have predisposed the evolution of venomous protease in the social aphid lineage and argue that gene duplication, accelerated molecular evolution, and acquisition of novel gene function must have played considerable roles in the evolution of complex biological systems including insect sociality.  相似文献   

10.
Digestive proteases of the phytophagous mite Tetranychus urticae have been characterised by comparing their activity in body and faecal extracts. Aspartyl, cathepsin B- and L-like and legumain activities were detected in both mite bodies and faeces, with a specific activity of aspartyl and cathepsin L-like proteases about 5- and 2-fold higher, respectively, in mite faeces than in bodies. In general, all these activities were maintained independently of the host plant where the mites were reared (bean, tomato or maize). Remarkably, this is the first report in a phytophagous mite of legumain-like activity, which was characterised for its ability to hydrolyse the specific substrate Z-VAN-AMC, its activation by DTT and inhibition by IAA but not by E-64. Gel free nanoLC–nanoESI-QTOF MS/MS proteomic analysis of mite faeces resulted in the identification of four cathepsins L and one aspartyl protease (from a total of the 29 cathepsins L, 27 cathepsins B, 19 legumains and two aspartyl protease genes identified the genome of this species). Gene expression analysis reveals that four cathepsins L and the aspartyl protease identified in the mite faeces, but also two cathepsins B and two legumains that were not detected in the faeces, were expressed at high levels in the spider mite feeding stages (larvae, nymphs and adults) relative to embryos. Taken together, these results indicate a digestive role for cysteine and aspartyl proteases in T. urticae. The expression of the cathepsins B and L, legumains and aspartyl protease genes analysed in our study increased in female adults after feeding on Arabidopsis plants over-expressing the HvCPI-6 cystatin, that specifically targets cathepsins B and L, or the CMe trypsin inhibitor that targets serine proteases. This unspecific response suggests that in addition to compensation for inhibitor-targeted enzymes, the increase in the expression of digestive proteases in T. urticae may act as a first barrier against ingested plant defensive proteins.  相似文献   

11.
12.
Increased levels of both the cysteine protease, cathepsin L, and the serine protease, uPA (urokinase-type plasminogen activator), are present in solid tumors and are correlated with malignancy. uPA is released by tumor cells as an inactive single-chain proenzyme (pro-uPA) which has to be activated by proteolytic cleavage. We analyzed in detail the action of the cysteine protease, cathepsin L, on recombinant human pro-uPA. Enzymatic assays, SDS-PAGE and Western blot analysis revealed that cathepsin L is a potent activator of pro-uPA. As determined by N-terminal amino acid sequence analysis, activation of pro-uPA by cathepsin L is achieved by cleavage of the Lys158-Ile159 peptide bond, a common activation site of serine proteases such as plasmin and kallikrein. Similar to cathepsin B (Kobayashi et al., J. Biol. Chem. (1991) 266, 5147-5152) cleavage of pro-uPA by cathepsin L was most effective at acidic pH (molar ratio of cathepsin L to pro-uPA of 1:2,000). Nevertheless, even at pH 7.0, pro-uPA was activated by cathepsin L, although a 10-fold higher concentration of cathepsin L was required. As tumor cells may produce both pro-uPA and cathepsin L, implications for the activation of tumor cell-derived pro-uPA by cathepsin L may be considered. Different pathways of activation of pro-uPA in tumor tissues may coexist: (i) autocatalytic intrinsic activation of pro-uPA; (ii) activation by serine proteases (plasmin, kallikrein, Factor XIIa); and (iii) activation by cysteine proteases (cathepsin B and L).  相似文献   

13.
14.
Human cathepsin F is a recently described papain-like cysteine protease of unknown function. To investigate the evolutionary relatedness to other human cathepsins, we determined the genomic organization and the chromosomal localization of cathepsin F and isolated its putative promoter region. The gene of human cathepsin F (CTSF) is composed of twelve exons and eleven introns and was found to be similar to that of cathepsin W but different from the cathepsins K, S, L, O, B, and C. The splice sites of nine out of the eleven introns were identical to those determined in the cathepsin W gene (CTSW), whereas introns one and ten were unique for CTSF. The 4. 7 kb gene was mapped to the long arm of chromosome 11 at position q13.1-3, a locus shared with CTSW. Phylogenetic analysis of human cathepsin protein sequences demonstrated that (i) cathepsins F and W are evolutionarily separated from other human cathepsins, and (ii) cysteine proteases closely related to human cathepsin W and F are also expressed in parasites and mammals. Based on these phylogenetic findings, on the presence of a particular protein motif ("ERFNAQ") in the propeptides of cathepsins F and W as well as the genomic organization and chromosomal localization of their genes, we concluded that F and W form a novel subgroup of cathepsin proteases. We suggest the naming "cathepsin F-like" proteases distinct from the previously described cathepsins "L- and B-like" subgroups.  相似文献   

15.
Brömme D  Li Z  Barnes M  Mehler E 《Biochemistry》1999,38(8):2377-2385
Cathepsin V, a thymus and testis-specific human cysteine protease, was expressed in Pichia pastoris, and its physicokinetic properties were determined. Recombinant procathepsin V is autocatalytically activated at acidic pH and is effectively inhibited by various cysteine protease class-specific inhibitors. The S2P2 subsite specificity of cathepsin V was found to be intermediate between those of cathepsins S and L. The substrate binding pocket, S2, accepted both aromatic and nonaromatic hydrophobic residues, whereas cathepsins L and S preferred either an aromatic or nonaromatic hydrophobic residue, respectively. In contrast to cathepsin L, but similar to cathepsin S, cathepsin V exhibited only a very weak collagenolytic activity. Furthermore, cathepsin V was determined to be significantly more stable at mildly acidic and neutral pH than cathepsin L, but distinctly less stable than cathepsin S. A homology structure model of cathepsin V revealed completely different electrostatic potentials on the molecular surface when compared with human cathepsin L. The model-based electrostatic potential of human cathepsin V was neutral to weakly positive at and in the vicinity of the active site cleft, whereas that of cathepsin L was negative over extended regions of the surface. Surprisingly, the electrostatic potential of the human cathepsin V model structure resembled that of the model structure of mouse cathepsin L. These differences in the electrostatic potential at the molecular surfaces provide a reactivity determinant that may be the source of differences in substrate selectivity and pH stability. Cathepsin V was mapped to the chromosomal region 9q22.2, a site adjacent to the cathepsin L locus. The high sequence identity and the overlapping chromosomal gene loci suggest that both proteases evolved from an ancestral cathepsin L-like precursor by gene duplication.  相似文献   

16.
17.
The major excreted protein of transformed mouse cells is an acid activable cysteine protease. In this paper, oxidized insulin B chain is shown to be a substrate for this protease. By isolation and analysis of the insulin B peptides generated by the protease, the bond specificity of this protease was determined. The bonds preferentially cleaved are glu13-ala14, leu17-val18, and tyr26-thr27. No obvious preference for a specific amino acid was found in these studies. The bond specificity of this cysteine protease for oxidized insulin B chain has been compared with that of other proteases, and it is the same as that reported for cathepsin L, suggesting that the major excreted protein and cathepsin L may be the same protein.  相似文献   

18.
19.
Lysosomal cysteine proteinase cathepsin B is implicated in remodeling the extracellular matrix, a crucial step in the process of tumor cell invasion. In this study the contributions of intracellular and extracellular cathepsin B activities in the invasion of ras-transformed human breast epithelial cells, MCF-10A neoT, were assessed using specific cathepsin B neutralizing monoclonal antibody (Mab) 2A2, together with other general and specific cysteine proteinase inhibitors. We showed that the degradation of extracellular matrix by living MCF-10A neoT cells was predominantly intracellular, as imaged by confocal assays using quenched fluorescent substrate DQ-collagen IV. CA-074, a membrane-impermeable cathepsin B-selective inhibitor and its membrane-permeable analogue CA-074Me showed similar inhibition of invasion at 10 microM, i.e., 24.9 and 27.0%, respectively. Neutralizing monoclonal antibody exhibited a significantly higher inhibitory effect, decreasing invasion at 0.5 microM by 42.7%. Tumor cells may internalize monoclonal antibody; therefore, 2A2 Mab could impair both the intracellular and the extracellular fractions of cathepsin B activity. However, both 2A2 Mab and cathepsin B-selective inhibitors were less potent than the general cysteine proteinase inhibitors chicken cystatin and E-64, indicating that other cysteine proteinases, presumably cathepsin L, are involved in invasion. Our results show that intracellular and extracellular cathepsin B activity contribute to in vitro invasion of MCF-10A neoT cells and suggest that inhibitors capable of impairing both fractions have a potential as new anticancer drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号