首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work describes the first cell-based model of tumor-induced angiogenesis. At the extracellular level, the model describes diffusion, uptake, and decay of tumor-secreted pro-angiogenic factor. At the cellular level, the model uses the cellular Potts model based on system-energy reduction to describe endothelial cell migration, growth, division, cellular adhesion, and the evolving structure of the stroma. Numerical simulations show: 1), different tumor-secreted pro-angiogenic factor gradient profiles dramatically affect capillary sprout morphology; 2), average sprout extension speeds depend on the proximity of the proliferating region to the sprout tip, and the coordination of cellular functions; and 3), inhomogeneities in the extravascular tissue lead to sprout branching and anastomosis, phenomena that emerge without any prescribed rules. This model provides a quantitative framework to test hypotheses on the biochemical and biomechanical mechanisms that control tumor-induced angiogenesis.  相似文献   

2.
Fibronectin is a component of the extracellular matrix of developing microvessels whose role in angiogensis is poorly understood. This study evaluated the effect of plasma fibronectin on angiogenesis in serum-free collagen gel culture of rat aorta. Aortic explants embedded in collagen gels generated microvascular outgrowths. Fibronectin incorporated in the collagen gel promoted a selective dose-dependent elongation of the newly formed microvessels without stimulating vascular proliferation. The fibronectin-treated microvessels were longer due to a proportional increase in the number of microvascular cells. However, fibronectin had no effect on microvascular DNA synthesis and mitotic activity. Fibronectin stimulated microvascular length also in cultures in which mitotic activity was suppressed and angiogenesis was markedly reduced by pretreating the aortic explants with mitomycin C. The synthetic peptide Gly-Arg-Asp-(GRGDS), which competes for the binding of fibronectin to its cell receptors and inhibits the adhesion of endothelial cells to substrates, arrested the elongation of developing microvessels causing regression and inhibition of angiogenesis. Conversely, Gly-Arg-Glu-(GRGES), which lacks the RGD sequence, had no inhibitory effect. These data support the hypothesis that fibronectin promotes angiogenesis and suggest that developing microvessels elongate in response to fibronectin as a result of an adhesion-dependent migratory recruitment of endothelial cells that does not require increased cell proliferation. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Progressive angiogenesis and endothelial differentiation in the chick chorioallantoic membrane (CAM) serve to accommodate oxygen demands of the growing embryo. The present study evaluated CAM microvascular endothelial permselectivity during the most rapid phase of angiogenesis (day 10) and after initiation of endothelial cytodifferentiation (day 14). Chick embryos were incubated using established shell-less culture techniques tor intravital and ultrastructural observations. Systemic microinjections of FITC-dextrans (40, 70 and 150 KDa) provided an index of endothelial permselectivity after 2.5 min and 10 min perfusions. Ultrastructural examinations of the same dextran probes served to detect small intermittent foci within the perivascular interstitium. Although minor variations of dextran particle distributions around specific segments of the microcirculation were observed ultrastructurally, perivascular accumulation was not sufficient to elicit a detectable fluorescent signal. Thus, substantial accumulation of the graded-dextran series in the perivascular intcrstitium was not detected. Morphometric analyses of the precapillary, capillary, and postcapillary microvascular segments served to demonstrate a continuous endothelium which displayed cytoplasmic attenuation at day 14. Plasmalemmal vesicles were few and uniform within the microvascular units at day 10. A three-fold increase in vesicle densities characterized the precapillary endothelia at day 14. Average widths of the endothelial junctional clefts were homogeneous within the segmental microvascular endothelia at both days 10 and 14. Junctional cleft lengths were also homogeneous, except the significantly longer capillary endothelial clefts observed at day 10. These results are consistent with the concept that, despite certain differences in segmental vesicle densities and junctional cleft lengths, neovascularization of the CAM is achieved without excessive macromolecular efflux across the microvascular endothelia.  相似文献   

4.
Calcium channels in neurons mediate a wide variety of essential functions. In addition to contributing to action potential shape, they furnish a substrate that acts as an intracellular second messenger. This study shows that the shape of the neuronal action potential has characteristics that promote long openings of L-type (high threshold) calcium channels. We also present evidence that a change in the firing rate of isolated neurons modulates gating of single calcium channels. This mechanism could be important in modulating neuron excitability and providing a rise in intracellular Ca, when needed.  相似文献   

5.
Mini-tyrosyl-tRNA synthetase (mini-TyrRS), the N-terminal domain of tyrosyl-tRNA synthetase, is a recently identified protein released by endothelial cells that exhibits angiogenic and leukocyte chemoattractant, ELR-motif (Glu-Leu-Arg)-dependent activities in vitro. We sought to determine whether exogenous mini-TyrRS exerts these and other cytokine-like actions in physiological and pathological settings in vivo. High-dose mini-TyrRS (600 microg.kg(-1).day(-1)) augmented while low-dose mini-TyrRS (3 microg.kg(-1).day(-1)), unexpectedly, inhibited angiogenesis in the ischemic mouse ear. Enhanced angiogenesis was associated with increased CD45- and CD4-positive leukocyte accumulation. Mini-TyrRS also had biphasic actions on both basal and mustard oil-evoked and VEGF-evoked leakage of Evan's blue dye-albumin in nonischemic ear and in endothelial cell monolayers, that is, low-dose inhibited and high-dose augmented leakage. Mutation of the ELR motif of mini-TyrRS abolished the above activities. Mini-TyrRS was reduced (immunoblot) in extracts of ischemic calf muscle and in thoracic aorta explants exposed to hypoxia or VEGF. Inhibition of VEGF with a soluble Flt1 "trap" protein abolished this hypoxic-induced reduction in mini-TyrRS in aorta explants. These data show that mini-TyrRS has dose-dependent biphasic effects on ischemic angiogenesis and vascular permeability in vivo, that is, antiangiogenic and antipermeability activities at low concentration and proangiogenic, propermeability activities at high concentrations.  相似文献   

6.
In this paper, formation of unique carbon nanostructures via carbonization of wood in a step-wise process is reviewed. The mechanism described for the production of carbon nanotubes improves our understanding of a historic mystery related to the production of Damascus steel.  相似文献   

7.
T Koyama 《Biorheology》1985,22(5):379-384
Wall shear rates in arterioles and capillaries in the surface of exposed bullfrog lung were estimated to be 436 and 975 sec-1, respectively, at the intra-lung pressure at which a maximum flow velocity was observed. These high shear rates will probably permit an orientation of erythrocytes in a high degree. An orientation of erythrocytes was confirmed at a wall shear rate smaller than 16 sec-1 by means of a microscope connected with a video camera system. Erythrocytes kept their long axis along the direction of the overall blood flow, even when the blood flow transiently stopped flowing during the diastolic phase. The orientation of erythrocytes in such a high degree will be effective to reduce the blood flow resistance in pulmonary microvessels.  相似文献   

8.
  相似文献   

9.
Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30–50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method , and the tumor cell dynamics was governed by the Newton’s law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor cell adhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10−2) laminar flow.  相似文献   

10.
11.
Ion permeability of black lipid membranes formed from synthetic phospholipids has been studied. The resistance of BLM formed from phosphatidylcholine, tiophosphatidylcholine, threealkylphosphate and threealkyltiophosphate was 10(7)--10(8) Ohm.cm2. It was shown that the membrane potential of the 10--30 mV arised in KCl gradient indicating the preference cation conductance in synthetic lipid membranes. A sharp decrease of the membrane conductance near to the phase transition temperature was discovered. The change of conductance by phase transition temperature was sensitive to chemical nature of the polar head of phospholipids used.  相似文献   

12.
The effect of four-wall shear rates (34.9, 74.8, 142.5, and 194.5 s(-1)) on bacterial deposition on glass slides in drinking water flow chambers was studied. Biofilm image acquisition was performed over a 50-day period. Bacterial accumulation and surface coverage curves were obtained. Microscopic observations allowed us to obtain information about the dynamics and spatial distribution of the biofilm. During the first stage of biofilm formation (210-518 h), bacterial accumulation was a function of the wall shear rate: the higher the wall shear rate, the faster the bacterial deposition (1.1 and 1.9 x 10(4) bacterial cells . cm(-2) for wall shear rates of 34.9 and 142.5 s(-1), respectively). A new similarity relationship characteristic of a non-dimensional time and function of the wall shear rate was proposed to describe initial bacterial deposition. After 50 days of exposure to drinking water, surface coverage was more or less identical under the entire wall shear rates (7.44 +/- 0.9%), suggesting that biofilm bacterial density cannot be controlled using hydrodynamics. However, the spatial distribution of the biofilm was clearly different. Under low wall shear rate, aggregates were composed of bacterial cells able to "vibrate" independently on the surface, whereas, under a high wall shear rate, aggregates were more cohesive. Therefore, susceptibility to the hydraulic discontinuities occurring in drinking water system may not be similar. In all the flow chambers, significant decreases in bacterial biomass (up to 77%) were associated with the presence of amoebae. This grazing preferentially targeted small, isolated cells.  相似文献   

13.
J D Lin 《Life sciences》1988,43(4):325-333
Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of 86Rb (as a tracer for K) into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity on K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed.  相似文献   

14.
Leukocyte-platelet aggregation and aggregate adhesion have been indicated as biomarkers of the severity of tissue injury during inflammation or ischemic reperfusion. The objective of this study is to investigate the mechanisms of the aggregate adhesion and quantitatively evaluate its relationship with microvessel permeability. A combined autologous blood perfusion with single microvessel perfusion technique was employed in rat mesenteric venular microvessels. The aggregate adhesion was induced by systemic application of TNF-alpha plus local application of platelet-activating factor (PAF). Changes in permeability were determined by measurements of hydraulic conductivity (Lp) before and after aggregate adhesion in the same individually perfused microvessels. The compositions of the adherent aggregates were identified with fluorescent labeling and confocal imaging. In contrast to leukocyte adhesion as single cells resulting in no increase in microvessel permeability, aggregate adhesion induced prolonged increases in microvessel Lp (6.1 +/- 0.9 times the control, n = 9) indicated by the initial Lp measurements after 3 h of blood perfusion, which is distinct from the transient Lp increase caused by PAF-induced endothelial activation in the absence of blood. Isoproteronol (Iso) attenuated aggregate adhesion-mediated Lp increases if applied after autologous blood perfusion and prevented the aggregate adhesion if the initial endothelial activation is inhibited by applying Iso before PAF administration but showed less effect on single leukocyte adhesion. This study demonstrated that leukocyte-platelet aggregate adhesion via a mechanism different from that of single leukocyte adhesion caused a prolonged increase in microvessel permeability. Our results also indicate that the initial activation of endothelial cells by PAF plays a crucial role in the initiation of leukocyte-platelet aggregate adhesion.  相似文献   

15.
Helical flows have been observed in the ascending aorta in vivo, and geometric curvature has been suggested to be a major contributing factor. We employed magnetic resonance imaging (MRI) and velocity mapping to develop a computational model to examine the effects of curvature and also wall compliance and movement upon flow patterns. In the computational model, MRI-derived geometry and velocities were imposed as boundary conditions, which included both radial expansion-contraction and translational motion of the wall. The computed results were in agreement with the MR data only when full wall motion was included in the model, suggesting that the flow patterns observed in the ascending aorta arise not only from geometric curvature of the arch but also from the motion of the aorta resulting from its attachment to the beating heart.  相似文献   

16.
17.
18.
Using a respiratory inductive plethysmograph (Respitrace) we studied thoracoabdominal movements in eight normal subjects during inspiratory resistive (Res) and elastic (El) loading. The magnitude of loads was chosen so as to produce a fall in inspiratory mouth pressure of 20 cmH2O. The contribution of rib cage (RC) to tidal volume (VT) increased significantly from 68% during quiet breathing (QB) to 74% during El and 78% during Res. VT and breathing frequency did not change significantly. During loading a phase lag was present on inspiration so that the abdomen led the rib cage. However, outward movement of the abdomen ceased in the latter part of inspiration, and the RC became the sole contributor to VT. These observations suggest greater recruitment of the inspiratory musculature of the RC than the diaphragm during loading, although changes in the mechanical properties of the chest wall may also have contributed. Indeed, an increase in abdominal end-expiratory and end-inspiratory pressures was observed in five out of six subjects, indicating abdominal muscle recruitment which may account for part of the reduction in abdominal excursion. Both Res and El increased the rate of emptying of the respiratory system during the ensuing unloaded expiration as a result of a reduction in rib cage expiratory-braking mechanisms. The time course of abdominal displacements during expiration was unaffected by loading.  相似文献   

19.
The anticoccidial effect of a product extracted from the natural herb Artemisia annua, artemisinin, which has a potential use as a dietary supplement, has been studied. Commercial artemisinin was administered at 10 and 17 ppm in food and tested against infection with Eimeria tenella. A battery trial to quantify the effect of artemisinin on the reproductive and infective capabilities of E. tenella was carried out. For that purpose flow cytometry was combined with electron microscopy and immunofluorescence techniques in order to study the effect of artemisinin on E. tenella gametogenesis. Significantly reduced oocyst output and lesion scores were found in chickens treated with artemisinin. In addition, evidence to support a lower oocyst sporulation rate was obtained. Though the ultrastructural studies showed normal development of gametogenesis in artemisinin-treated chickens, the oocyst wall formation was significantly altered. This resulted in both death of developing oocysts and reduced sporulation rate. Immunofluorescent studies provided evidence that treatment with artemisinin inhibited sarcoplasmic–endoplasmic reticulum calcium ATPase (SERCA) expression in macrogametes. According to these findings, artemisinin has a deleterious effect on fertilized macrogametes (early zygotes) by inhibiting SERCA. The altered secretion of the wall-forming bodies may be the result of Ca2+-dependent ATPase impaired activity which, in turn, is the result of SERCA inhibition.  相似文献   

20.
The measurement of pulmonary mechanics has been developed extensively for adults, and these techniques have been applied directly to neonates and infants. However, the compliant chest wall of the infant frequently predisposes to chest wall distortion, especially when there is a low dynamic lung compliance (CL,dyn). We describe a technique of directly measuring the static chest wall compliance (Cw,st), developed initially in the newborn lamb and subsequently applied to the premature neonate with chest wall distortion. The mean CL,dyn in seven intubated newborn lambs in normoxia was 2.45 +/- 0.41 ml.cmH2O-1.kg-1, whereas Cw,st was 11.81 +/- 0.25 ml.cmH2O-1.kg-1. These values did not change significantly in seven animals breathing through a tight-fitting face mask or with hypercapnia-induced tachypnea. For the eight premature infants the mean CL,dyn was 1.35 +/- 0.36 ml.cmH2O-1.kg-1, whereas the mean Cw,st was 3.16 +/- 1.01 ml.cmH2O-1.kg-1. This study shows that, under relaxed conditions when measurements of static compliance are performed, the chest wall is more compliant than the lung. The measurement of Cw,st may thus be used to determine the contribution of the respiratory musculature in stabilizing the chest wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号