首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selected reaction monitoring (SRM) is a targeted mass spectrometric method that is increasingly used in proteomics for the detection and quantification of sets of preselected proteins at high sensitivity, reproducibility and accuracy. Currently, data from SRM measurements are mostly evaluated subjectively by manual inspection on the basis of ad hoc criteria, precluding the consistent analysis of different data sets and an objective assessment of their error rates. Here we present mProphet, a fully automated system that computes accurate error rates for the identification of targeted peptides in SRM data sets and maximizes specificity and sensitivity by combining relevant features in the data into a statistical model.  相似文献   

2.
In proteomics, selected reaction monitoring (SRM) is rapidly gaining importance for targeted protein quantification. The triple quadrupole mass analyzers used in SRM assays allow for levels of specificity and sensitivity hard to accomplish by more standard shotgun proteomics experiments. Often, an SRM assay is built by in silico prediction of transitions and/or extraction of peptide precursor and fragment ions from a spectral library. Spectral libraries are typically generated from nonideal ion trap based shotgun proteomics experiments or synthetic peptide libraries, consuming considerable time and effort. Here, we investigate the usability of beam type CID (or "higher energy CID" (HCD)) peptide fragmentation spectra, as acquired using an Orbitrap Velos, to facilitate SRM assay development. Therefore, peptide fragmentation spectra, obtained by ion-trap CID, triple-quadrupole CID (QqQ-CID) and Orbitrap HCD, originating from digested cellular lysates, were compared. Spectral comparison and a dedicated correlation algorithm indicated significantly higher similarity between QqQ-CID and HCD fragmentation spectra than between QqQ-CID and ion trap-CID spectra. SRM transitions generated using a constructed HCD spectral library increased SRM assay sensitivity up to 2-fold, when compared to the use of a library created from more conventionally used ion trap-CID spectra, showing that HCD spectra can assist SRM assay development.  相似文献   

3.
4.
Systems biology relies on data sets in which the same group of proteins is consistently identified and precisely quantified across multiple samples, a requirement that is only partially achieved by current proteomics approaches. Selected reaction monitoring (SRM)—also called multiple reaction monitoring—is emerging as a technology that ideally complements the discovery capabilities of shotgun strategies by its unique potential for reliable quantification of analytes of low abundance in complex mixtures. In an SRM experiment, a predefined precursor ion and one of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted peptide can constitute a definitive assay. Typically, a large number of peptides are quantified during a single LC‐MS experiment. This tutorial explains the application of SRM for quantitative proteomics, including the selection of proteotypic peptides and the optimization and validation of transitions. Furthermore, normalization and various factors affecting sensitivity and accuracy are discussed.  相似文献   

5.
随着蛋白质组学研究的不断深入,基于质谱的选择反应监测技术(SRM)已经成为以发现生物标志物为代表的定向蛋白质组学研究的重要手段.SRM技术根据假设信息,特异性地获取符合假设条件的质谱信号,去除不符合条件的离子信号干扰,从而得到特定蛋白质的定量信息.SRM技术具有更高的灵敏度和精确性、更大的动态范围等优势.该技术可分为实验设计、数据获取和数据分析三个步骤.在这几个步骤中,最重要的是利用生物信息学手段总结当前实验数据的结果,并用机器学习方法和总结的经验规则进行SRM实验的母离子和子离子对的预测.针对数据质控和定量的生物信息学方法研究在提高SRM数据可靠性方面具有重要作用.此外,为方便SRM的研究,本文还收集、汇总了SRM技术相关的软件、工具和数据库资源.随着质谱仪器的不断发展,新的SRM实验策略以及分析方法、计算工具也应运而生.结合更优化的实验策略、方法,采用更精准的生物信息学算法和工具,SRM在未来蛋白质组学的发展中将发挥更加重要的作用.  相似文献   

6.
The mzQuantML data standard was designed to capture the output of quantitative software in proteomics, to support submissions to public repositories, development of visualization software and pipeline/modular approaches. The standard is designed around a common core that can be extended to support particular types of technique through the release of semantic rules that are checked by validation software. The first release of mzQuantML supported four quantitative proteomics techniques via four sets of semantic rules: (i) intensity‐based (MS1) label free, (ii) MS1 label‐based (such as SILAC or N15), (iii) MS2 tag‐based (iTRAQ or tandem mass tags), and (iv) spectral counting. We present an update to mzQuantML for supporting SRM techniques. The update includes representing the quantitative measurements, and associated meta‐data, for SRM transitions, the mechanism for inferring peptide‐level or protein‐level quantitative values, and support for both label‐based or label‐free SRM protocols, through the creation of semantic rules and controlled vocabulary terms. We have updated the specification document for mzQuantML (version 1.0.1) and the mzQuantML validator to ensure that consistent files are produced by different exporters. We also report the capabilities for production of mzQuantML files from popular SRM software packages, such as Skyline and Anubis.  相似文献   

7.
基于三重四极杆质谱仪的选择反应监测(SRM)技术是一种根据已有信息或理论信息靶向进行质谱信号采集的技术,具有高选择性、高重复性、高灵敏度、宽动态范围等特点,已被广泛应用于蛋白质组学研究,用于生物样本中蛋白质的绝对定量分析.本文对SRM技术的特点、发展过程、在蛋白质组学中的应用现状以及发展前景进行了概述.  相似文献   

8.
Selected reaction monitoring (SRM) MS is proving to be a popular approach for targeted quantitative proteomics. The use of proteotypic peptides as candidates for SRM analysis is a wise first step in SRM method design. The obvious reason for this is the need to avoid redundancy at the sequence level, however this is incidental. The true reason is that homologous peptides result in redundancy in the mass‐to‐charge domain. This may seem like a trivial subtlety, however, we believe this is an issue of far greater significance than the proteomic community is aware. This VIEWPOINT article serves to highlight the complexity associated with designing SRM assays in light of potential ion redundancy.  相似文献   

9.
Since LC-MS-based quantitative proteomics has become increasingly applied to a wide range of biological applications over the past decade, numerous studies have performed relative and/or absolute abundance determinations across large sets of proteins. In this study, we discovered prognostic biomarker candidates from limited breast cancer tissue samples using discovery-through-verification strategy combining iTRAQ method followed by selected reaction monitoring/multiple reaction monitoring analysis (SRM/MRM). We identified and quantified 5122 proteins with high confidence in 18 patient tissue samples (pooled high-risk (n = 9) or low-risk (n = 9)). A total of 2480 proteins (48.4%) of them were annotated as membrane proteins, 16.1% were plasma membrane and 6.6% were extracellular space proteins by Gene Ontology analysis. Forty-nine proteins with >2-fold differences in two groups were chosen for further analysis and verified in 16 individual tissue samples (high-risk (n = 9) or low-risk (n = 7)) using SRM/MRM. Twenty-three proteins were differentially expressed among two groups of which MFAP4 and GP2 were further confirmed by Western blotting in 17 tissue samples (high-risk (n = 9) or low-risk (n = 8)) and Immunohistochemistry (IHC) in 24 tissue samples (high-risk (n = 12) or low-risk (n = 12)). These results indicate that the combination of iTRAQ and SRM/MRM proteomics will be a powerful tool for identification and verification of candidate protein biomarkers.  相似文献   

10.
With high sensitivity and reproducibility, selected reaction monitoring (SRM) has become increasingly popular in proteome research for targeted quantification of low abundance proteins and post translational modification. SRM is also well accepted in other mass-spectrometry based research areas such as lipidomics and metabolomics, which necessitates the development of easy-to-use software for both post-acquisition SRM data analysis and quantification result validation. Here, we introduce a software tool SRMBuilder, which can automatically parse SRM data in multiple file formats, assign transitions to compounds, match light/heavy transition/compound pairs and provide a user-friendly graphic interface to manually validate the quantification result at transition/compound/sample level. SRMBuilder will greatly facilitate processing of the post-acquisition data files and validation of quantification result for SRM. The software can be downloaded for free from http://www.proteomics.ac.cn/software/proteomicstools/index.htm as part of the software suite ProteomicsTools.  相似文献   

11.
The plenary session of the Proteomics Standards Initiative (PSI) of the Human Proteome Organization at the Tenth annual HUPO World Congress updated the delegates on the ongoing activities of this group. The Molecular Interactions workgroup described the success of the PSICQUIC web service, which enables users to access multiple interaction resources with a single query. One user instance is the IMEx Consortium, which uses the service to enable users to access a non-redundant set of protein-protein interaction records. The mass spectrometry data formats, mzML for mass spectrometer output files and mzIdentML for the output of search engines, are now successfully established with increasing numbers of implementations. A format for the output of quantitative proteomics data, mzQuantML, and also TraML, for SRM/MRM transition lists, are both currently nearing completion. The corresponding MIAPE documents are being updated in line with advances in the field, as is the shared controlled vocabulary PSI-MS. In addition, the mzTab format was introduced, as a simpler way to report MS proteomics and metabolomics results. Finally, the ProteomeXchange Consortium, which will supply a single entry point for the submission of MS proteomics data to multiple data resources including PRIDE and PeptideAtlas, is currently being established.  相似文献   

12.
The Human Proteome Organisation Proteomics Standards Initiative (HUPO-PSI) was established in 2002 with the aim of defining community standards for data representation in proteomics and facilitating data comparison, exchange and verification. Over the last 10 years significant advances have been made, with common data standards now published and implemented in the field of both mass spectrometry and molecular interactions. The 2012 meeting further advanced this work, with the mass spectrometry groups finalising approaches to capturing the output from recent developments in the field, such as quantitative proteomics and SRM. The molecular interaction group focused on improving the integration of data from multiple resources. Both groups united with a guest work track, organized by the HUPO Technology/Standards Committee, to formulate proposals for data submissions from the HUPO Human Proteome Project and to start an initiative to collect standard experimental protocols.  相似文献   

13.
Selected reaction monitoring (SRM) is a highly selective and sensitive mass spectrometric methodology for precise and accurate quantification of low-abundant proteins in complex mixtures and for characterization of modified peptides, and constitutes the method of choice in targeted proteomics. Owing to its outstanding features, SRM arises as an alternative to antibody-based assays for discovery and validation of clinically relevant biomarkers, a topic that is tackled in this article. Several of the obstacles encountered in SRM experiments, mainly those derived from shared physicochemical properties of peptides (e.g., mass, charge and chromatographic retention time), can compromise selectivity and quantitation. We illustrate how to circumvent these limitations on the basis of using time-scheduled chromatographic approaches and choosing appropriate spectrometric conditions, including the careful selection of the precursor and diagnostic ions.  相似文献   

14.
Mass spectrometry-based targeted proteomics is a rapidly expanding method for quantifying proteins in complex clinical samples such as plasma. In conjunction with the stable isotope dilution method, selected reaction monitoring (SRM) assays provide unparalleled sensitivity and selectivity for detection and quantification. A crucial factor for robust SRM assays is the reduction of interference by lowering the background. This can be achieved by the selective isolation of a subproteome, such as N-glycosylated proteins, from the original sample. The present protocol includes the development and optimization of SRM assays associated with each peptide of interest and the qualification of assays in the biological matrix to establish the limits of detection and quantification. The protocol also describes the enrichment of formerly N-glycosylated peptides relying on periodate oxidation of glycan moieties attached to the proteins, their immobilization on solid supports through hydrazide chemistry, proteolysis and enzymatic release of the formerly N-glycosylated peptides.  相似文献   

15.
Large-scale proteomics applications using SRM analysis on triple quadrupole mass spectrometers present new challenges to LC-MS/MS experimental design. Despite the automation of building large-scale LC-SRM methods, the increased numbers of targeted peptides can compromise the balance between sensitivity and selectivity. To facilitate large target numbers, time-scheduled SRM transition acquisition is performed. Previously published results have demonstrated incorporation of a well-characterized set of synthetic peptides enabled chromatographic characterization of the elution profile for most endogenous peptides. We have extended this application of peptide trainer kits to not only build SRM methods but to facilitate real-time elution profile characterization that enables automated adjustment of the scheduled detection windows. Incorporation of dynamic retention time adjustments better facilitate targeted assays lasting several days without the need for constant supervision. This paper provides an overview of how the dynamic retention correction approach identifies and corrects for commonly observed LC variations. This adjustment dramatically improves robustness in targeted discovery experiments as well as routine quantification experiments.  相似文献   

16.
Simultaneous quantification of multiple proteins by selected reaction monitoring (SRM) has several applications in cell signaling studies including embryo proteomics. However, concerns have recently been raised over the specificity of SRM assays due to possible ion redundancy and/or sequence similarity of selected peptide with multiple non‐related proteins. In this Viewpoint article, we discuss some simple measures that can increase our confidence in the accuracy of SRM scans used in proteomic experiments. At least in embryonic samples from porcine species, these measures were found to be useful in validating MS‐identified differentially expressed proteins. Among the nine proteins analyzed by SRM assay, all the proteins that were found to be up‐ or down‐regulated in MS experiment were also faithfully up‐ or down‐regulated in SRM assay.  相似文献   

17.
Halligan BD  Greene AS 《Proteomics》2011,11(6):1058-1063
A major challenge in the field of high-throughput proteomics is the conversion of the large volume of experimental data that is generated into biological knowledge. Typically, proteomics experiments involve the combination and comparison of multiple data sets and the analysis and annotation of these combined results. Although there are some commercial applications that provide some of these functions, there is a need for a free, open source, multifunction tool for advanced proteomics data analysis. We have developed the Visualize program that provides users with the abilities to visualize, analyze, and annotate proteomics data; combine data from multiple runs, and quantitate differences between individual runs and combined data sets. Visualize is licensed under GNU GPL and can be downloaded from http://proteomics.mcw.edu/visualize. It is available as compiled client-based executable files for both Windows and Mac OS X platforms as well as PERL source code.  相似文献   

18.
The growing use of selected reaction monitoring (SRM) mass spectrometry in proteomic analyses led us to investigate how to identify peptides by SRM using only a minimal number of fragment ions. By using a computational model of the SRM work flow we computed the potential interferences from other peptides in a given proteome. From these results, we selected the deterministic SRM addresses that contained sufficient information to confer peptide and protein identity that we termed unique ion signatures (UIS). We computationally showed that UIS comprised of only two transitions are diagnostic for >99% of Escherichia coli proteins and >96% of human proteins that possess a sequence-unique peptide. We demonstrated an example of experimental use of UIS using a modified SRM methodology to profile the E. coli tricarboxylic acid cycle from a single injection of cell lysate. In addition, we showed the potential of UIS to form the first functionally orthogonal approach to validate peptide assignments obtained from conventional analyses of MS/MS spectra. The UIS methodology is a novel deterministic peptide identification method for MS/MS spectra based on information content. These robust theoretical assays will have widespread use when integrated with previously collected MS/MS data and conventional proteomics technologies.Shotgun proteomic analyses using multidimensional LC/MS/MS show great capacity for rapid protein analysis. This is arguably the most prevalent work flow for high throughput comparative proteomics, utilizing information-dependent acquisition (IDA)1 to acquire MS/MS triggered by the signals generated from incoming peptides (13). Despite the utility and widespread use of this approach, there remain inherent problems including a relatively high level of ambiguous and false peptide assignments (∼5%) as well as high numbers of unassigned mass spectra (46). The reason for this level of ambiguity stems in part from the non-deterministic nature of the identification algorithms. Without the use of reference standards the only way to know a spectrum was generated by a given peptide with absolute certainty is for the spectrum to contain a fragment pattern that conclusively demonstrates the presence of each amino acid. Unfortunately this level of coverage is extremely rare in proteomics data.More recently, selected reaction monitoring (SRM) or multiple reaction monitoring (MRM) mass spectrometry methods have been deployed for proteomic analyses (720). This has occurred as proteomics has matured from a discovery-oriented discipline into a more targeted and quantitative field. The method is conventionally conducted using triple quadrupole mass spectrometers where two rounds of mass selection provide excellent fidelity and sensitivity to monitor one or more predetermined target peptides generally in the context of a complex sample such as a cell lysate. Using this approach the mass spectrometer continually monitors the selected precursor ion m/z (Q1) and a subsequent product ion m/z (Q3) from the target analyte. SRM experiments can be used to conduct several rounds of these scans targeting different product ions in an attempt to bolster the confidence that the Q1 → Q3 transitions monitor the intended analyte with fidelity. A key point of contrast with IDA experiments is the need to preselect target analytes for monitoring. This can be achieved by harvesting data from previous discovery-based experiments or by in silico predictions such as MRM-initiated detection and sequencing (MIDAS) (10, 12). Regardless the key underlying principle of SRM in proteomics applications is that the selected set of precursor and product ions contain sufficient information to proxy for the target peptide and thereby its protein of origin. Given that proteomics SRM experiments are conducted with a minimal set of transitions, one must accept that a degree of uncertainty resides in any such assay. To date, the magnitude of this uncertainty has not been studied. This remains a key point even with MS instruments capable of conducting subsequent full MS/MS scans triggered by SRM (e.g. QTrap) as these are lower sensitivity scans that may contain insufficient fragmentation data to conclusively confer peptide identity.The problem of interference is also present in SRM experiments. To achieve acceptable sensitivity a large Q1 m/z window (±0.3–1.0 m/z) is needed. This in turn allows other peptides with similar Q1 m/z and elution properties to interfere with detection of the desired target. The frequency of these interferences would likely increase as the complexity of the sample increases creating a greater likelihood of false positives. Clearly this is not an unexpected result as conventional peptide identification strategies utilizing tandem MS result in some false assignments. Therefore, it would be unreasonable to expect that SRM assays that typically utilize fewer product ions than MS/MS experiments would not also encounter similar interference (21).In this study we investigated the information content of SRM assays and in doing so exposed the potential redundancy. Computational simulations of the experiment enabled us to demonstrate that directed selection of SRM precursor and product ions can avoid the pitfalls of interference by selecting ion combinations that uniquely map to target peptides within the context of the simulation. We used these unique ion signatures (UIS) in a proof of concept study to direct SRM data acquisition for the exclusive detection of enzymes in the Escherichia coli tricarboxylic acid cycle. In addition, given that UIS have been calculated to uniquely define target peptides in the experimental context, we demonstrated the applicability of UIS as an orthogonal validation of peptide identity for traditional MS/MS experiments.  相似文献   

19.
Using high-resolution MS-based proteomics in combination with multiple protease digestion, we profiled, with on average 90% sequence coverage, all 13 viral proteins present in an human adenovirus (HAdV) vector. This in-depth profile provided multiple peptide-based evidence on intrinsic protease activity affecting several HAdV proteins. Next, the generated peptide library was used to develop a targeted proteomics method using selected reaction monitoring (SRM) aimed at quantitative profiling of the stoichiometry of all 13 proteins present in the HAdV. We also used this method to probe the release of specific virus proteins initiated by thermal stimulation, mimicking the early stage of HAdV disassembly during entry into host cells. We confirmed the copy numbers of the most well characterized viral capsid components and established the copy numbers for proteins whose stoichiometry has so far not been accurately defined. We also found that heating HAdV induces the complete release of the penton base and fiber proteins as well as a substantial release of protein VIII and VI. For these latter proteins, maturational proteolysis by the adenoviral protease leads to the differential release of fragments with certain peptides being fully released and others largely retained in the AdV particles. This information is likely to be beneficial for the ongoing interpretation of high resolution cryoEM and x-ray electron density maps.  相似文献   

20.
Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号