首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-nucleotide polymorphism (SNP) genotyping is widely used in genetic association studies to characterize genetic factors underlying inherited traits. Despite many recent advances in high-throughput SNP genotyping, inexpensive and flexible methods with reasonable throughput levels are still needed. Real-time PCR methods for discovering and genotyping SNPs are becoming increasingly important in various fields of biology. In this study, we introduce a new, single-tube strategy that combines the tetra-primer ARMS PCR assay, SYBR Green I-based real-time PCR, and melting-point analysis with primer design strategies to detect the SNP of interest. This assay, T-Plex real-time PCR, is based on the Tm discrimination of the amplified allele-specific amplicons in a single tube. The specificity, sensitivity, and robustness of the assay were evaluated for common mutations in the FV, PII, MTHFR, and FGFR3 genes. We believe that T-Plex real-time PCR would be a useful alternative for either individual genotyping requests or large epidemiological studies.  相似文献   

2.
Single nucleotide polymorphism (SNP) genotyping has become a key technology for genetic studies. In recent years, matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry has emerged as a very powerful method for SNP genotyping. Here, we discuss our experience in implementing a high-throughput SNP genotyping facility based on MALDI, and the issues encountered in adapting this to large-scale genetic studies. Most of these issues are not specific to using MALDI approaches, and they will also serve as valuable pointers for establishing high-throughput genotyping with other methods.  相似文献   

3.
Different methods have been developed for single nucleotide polymorphism (SNP) typing during recent years. Allele-specific polymerase chain reaction (ASPCR) is a cost-saving method that scores SNPs by difference of the PCR efficiency of allele-specific primers. However, ASPCR for SNP typing is notoriously confounded for its locus-specific unpredictability and the laborious gel electrophoresis. In the current study, we investigated the real-time kinetics of ASPCR and found that a simple touchdown thermocycling protocol improved its specificity significantly. Combined with real-time PCR, we developed a homogeneous genotyping method and scored more than 1000 genotypes, including all transition and transversion SNPs. A clear genotyping result was identified and validated the robustness of the method. Optimization of reactions and intrinsic modification of allele-specific primers, a laborious process but one that is repeatedly reported to be inevitable for successful ASPCR, was proved to be unnecessary with our method. Accuracy was confirmed with mass spectrometry. These characters enabled real-time ASPCR with the touchdown thermocycling protocol being very competitive among various SNP typing methods for large-scale genetic studies.  相似文献   

4.
Single nucleotide polymorphisms (SNPs), due to their abundance and low mutation rate, are very useful genetic markers for genetic association studies. However, the current genotyping technology cannot afford to genotype all common SNPs in all the genes. By making use of linkage disequilibrium, we can reduce the experiment cost by genotyping a subset of SNPs, called Tag SNPs, which have a strong association with the ungenotyped SNPs, while are as independent from each other as possible. The problem of selecting Tag SNPs is NP-complete; when there are large number of SNPs, in order to avoid extremely long computational time, most of the existing Tag SNP selection methods first partition the SNPs into blocks based on certain block definitions, then Tag SNPs are selected in each block by brute-force search. The size of the Tag SNP set obtained in this way may usually be reduced further due to the inter-dependency among blocks. This paper proposes two algorithms, TSSA and TSSD, to tackle the block-independent Tag SNP selection problem. TSSA is based on A* search algorithm, and TSSD is a heuristic algorithm. Experiments show that TSSA can find the optimal solutions for medium-sized problems in reasonable time, while TSSD can handle very large problems and report approximate solutions very close to the optimal ones.  相似文献   

5.
SNPselector: a web tool for selecting SNPs for genetic association studies   总被引:7,自引:0,他引:7  
SUMMARY: Single nucleotide polymorphisms (SNPs) are commonly used for association studies to find genes responsible for complex genetic diseases. With the recent advance of SNP technology, researchers are able to assay thousands of SNPs in a single experiment. But the process of manually choosing thousands of genotyping SNPs for tens or hundreds of genes is time consuming. We have developed a web-based program, SNPselector, to automate the process. SNPselector takes a list of gene names or a list of genomic regions as input and searches the Ensembl genes or genomic regions for available SNPs. It prioritizes these SNPs on their tagging for linkage disequilibrium, SNP allele frequencies and source, function, regulatory potential and repeat status. SNPselector outputs result in compressed Excel spreadsheet files for review by the user. AVAILABILITY: SNPselector is freely available at http://primer.duhs.duke.edu/  相似文献   

6.
Although single nucleotide polymorphisms (SNPs) are commonly used in human genetics, they have only recently been incorporated into genetic studies of non‐model organisms, including cetaceans. SNPs have several advantages over other molecular markers for studies of population genetics: they are quicker and more straightforward to score, cross‐laboratory comparisons of data are less complicated, and they can be used successfully with low‐quality DNA. We screened portions of the genome of one of the most abundant cetaceans in U.S. waters, the common bottlenose dolphin (Tursiops truncatus), and identified 153 SNPs resulting in an overall average of one SNP every 463 base pairs. Custom TaqMan® Assays were designed for 53 of these SNPs, and their performance was tested by genotyping a set of bottlenose dolphin samples, including some with low‐quality DNA. We found that in 19% of the loci examined, the minor allele frequency (MAF) estimated during initial SNP ascertainment using a DNA pool of 10 individuals differed significantly from the final MAF after genotyping over 100 individuals, suggesting caution when making inferences about MAF values based on small data sets. For two assays, we also characterized the basis for unusual clustering patterns to determine whether their data could still be utilized for further genetic studies. Overall results support the use of these SNPs for accurate analysis of both poor and good‐quality DNA. We report the first SNP markers and genotyping assays for use in population and conservation genetic studies of bottlenose dolphins.  相似文献   

7.
We report the development and validation of experimental methods, study designs, and analysis software for pooling-based genomewide association (GWA) studies that use high-throughput single-nucleotide-polymorphism (SNP) genotyping microarrays. We first describe a theoretical framework for establishing the effectiveness of pooling genomic DNA as a low-cost alternative to individually genotyping thousands of samples on high-density SNP microarrays. Next, we describe software called "GenePool," which directly analyzes SNP microarray probe intensity data and ranks SNPs by increased likelihood of being genetically associated with a trait or disorder. Finally, we apply these methods to experimental case-control data and demonstrate successful identification of published genetic susceptibility loci for a rare monogenic disease (sudden infant death with dysgenesis of the testes syndrome), a rare complex disease (progressive supranuclear palsy), and a common complex disease (Alzheimer disease) across multiple SNP genotyping platforms. On the basis of these theoretical calculations and their experimental validation, our results suggest that pooling-based GWA studies are a logical first step for determining whether major genetic associations exist in diseases with high heritability.  相似文献   

8.
Two potential single nucleotide polymorphisms [SNPs; rs1804215 (G979T) and rs11545379 (G1169T)] have been identified in the human pancreatic ribonuclease, RNase 1, gene (RNASE1) that could give rise to an amino acid substitution in the protein, but relevant population data are not available. We have developed genotyping methods for each SNP using the mismatched PCR-restriction fragment length polymorphism technique. These methods are advantageous in comparison with other SNP genotyping methods because they are technically simpler and do not require specialized instruments. We applied these genotyping methods to examine the genotype distribution of each SNP in four populations, including Japanese populations living in two prefectures, an Ovambo population, and a Turkish population. In all the populations studied, however, only a single genotype for each SNP was found. Therefore, irrespective of differences in ethnic groups, RNASE1 might show markedly low heterogeneity in its genetic structure with regard to these SNPs.  相似文献   

9.
Dou J  Zhao X  Fu X  Jiao W  Wang N  Zhang L  Hu X  Wang S  Bao Z 《Biology direct》2012,7(1):17-9
ABSTRACT: BACKGROUND: Single nucleotide polymorphisms (SNPs) are the most abundant type of genetic variation in eukaryotic genomes and have recently become the marker of choice in a wide variety of ecological and evolutionary studies. The advent of next-generation sequencing (NGS) technologies has made it possible to efficiently genotype a large number of SNPs in the non-model organisms with no or limited genomic resources. Most NGS-based genotyping methods require a reference genome to perform accurate SNP calling. Little effort, however, has yet been devoted to developing or improving algorithms for accurate SNP calling in the absence of a reference genome. RESULTS: Here we describe an improved maximum likelihood (ML) algorithm called iML, which can achieve high genotyping accuracy for SNP calling in the non-model organisms without a reference genome. The iML algorithm incorporates the mixed Poisson/normal model to detect composite read clusters and can efficiently prevent incorrect SNP calls resulting from repetitive genomic regions. Through analysis of simulation and real sequencing datasets, we demonstrate that in comparison with ML or a threshold approach, iML can remarkably improve the accuracy of de novo SNP genotyping and is especially powerful for the reference-free genotyping in diploid genomes with high repeat contents. CONCLUSIONS: The iML algorithm can efficiently prevent incorrect SNP calls resulting from repetitive genomic regions, and thus outperforms the original ML algorithm by achieving much higher genotyping accuracy. Our algorithm is therefore very useful for accurate de novo SNP genotyping in the non-model organisms without a reference genome.  相似文献   

10.
Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic variation that can be used as molecular markers. The SNPs that are hidden in sequence databases can be unlocked using bioinformatic tools. For efficient application of these SNPs, the sequence set should be error-free as much as possible, targeting single loci and suitable for the SNP scoring platform of choice. We have developed a pipeline to effectively mine SNPs from public EST databases with or without quality information using QualitySNP software, select reliable SNP and prepare the loci for analysis on the Illumina GoldenGate genotyping platform. The applicability of the pipeline was demonstrated using publicly available potato EST data, genotyping individuals from two diploid mapping populations and subsequently mapping the SNP markers (putative genes) in both populations. Over 7000 reliable SNPs were identified that met the criteria for genotyping on the GoldenGate platform. Of the 384 SNPs on the SNP array approximately 12% dropped out. For the two potato mapping populations 165 and 185 SNPs segregating SNP loci could be mapped on the respective genetic maps, illustrating the effectiveness of our pipeline for SNP selection and validation.  相似文献   

11.
单核苷酸多态性检测分析技术   总被引:17,自引:3,他引:17  
高秀丽  景奉香  杨剑波  赵建龙 《遗传》2005,27(1):110-122
单核苷酸多态性(SNP)作为第三代遗传标记已经广泛用于基因作图、疾病相关性分析、群体遗传学及药物研究等领域。 文中系统地介绍了目前国内外主要的SNP检测技术,任何一种SNP的检测方法都可将之看成由两部分组成,即区分SNP位点的原理方法和数据的检测分析手段,文章对这两部分做了较详细的介绍,并对SNP检测技术的发展进行了展望。 Abstract :As the third generation of genetic markers SNPs(single nucleotide polymorphisms)has been used extentively in gene mapping,disease-correlativity analysis ,population genetics and drug research.Here methods for detection are reviewed.Most SNP genotyping are a combination of method for interrogating SNPs and analysis tecnique.It described both parts and give a outlook for detection.  相似文献   

12.
Single nucleotide polymorphism (SNP) detection technologies are used to scan for new polymorphisms and to determine the allele(s) of a known polymorphism in target sequences. SNP detection technologies have evolved from labor intensive, time consuming, and expensive processes to some of the most highly automated, efficient, and relatively inexpensive methods. Driven by the Human Genome Project, these technologies are now maturing and robust strategies are found in both SNP discovery and genotyping areas. The nearly completed human genome sequence provides the reference against which all other sequencing data can be compared. Global SNP discovery is therefore only limited by the amount of funding available for the activity. Local, target, SNP discovery relies mostly on direct DNA sequencing or on denaturing high performance liquid chromatography (dHPLC). The number of SNP genotyping methods has exploded in recent years and many robust methods are currently available. The demand for SNP genotyping is great, however, and no one method is able to meet the needs of all studies using SNPs. Despite the considerable gains over the last decade, new approaches must be developed to lower the cost and increase the speed of SNP detection.  相似文献   

13.
SNP arrays are widely used in genetic research and agricultural genomics applications, and the quality of SNP genotyping data is of paramount importance. In the present study, SNP genotyping concordance and discordance were evaluated for commercial bovine SNP arrays based on two types of quality assurance (QA) samples provided by Neogen GeneSeek. The genotyping discordance rates (GDRs) between chips were on average between 0.06% and 0.37% based on the QA type I data and between 0.05% and 0.15% based on the QA type II data. The average genotyping error rate (GER) pertaining to single SNP chips, based on the QA type II data, varied between 0.02% and 0.08% per SNP and between 0.01% and 0.06% per sample. These results indicate that genotyping concordance rate was high (i.e. from 99.63% to 99.99%). Nevertheless, mitochondrial and Y chromosome SNPs had considerably elevated GDRs and GERs compared to the SNPs on the 29 autosomes and X chromosome. The majority of genotyping errors resulted from single allotyping errors, which also included the opposite instances for allele ‘dropout’ (i.e. from AB to AA or BB). Simultaneous allotyping errors on both alleles (e.g. mistaking AA for BB or vice versa) were relatively rare. Finally, a list of SNPs with a GER greater than 1% is provided. Interpretation of association effects of these SNPs, for example in genome‐wide association studies, needs to be taken with caution. The genotyping concordance information needs to be considered in the optimal design of future bovine SNP arrays.  相似文献   

14.
The dog is an attractive model for genetic studies of complex disease. With drafts of the canine genome complete, a large number of single-nucleotide polymorphisms (SNPs) that are potentially useful for gene-mapping studies and empirical estimations of canine diversity and linkage disequilibrium (LD) are now available. Unfortunately, most canine SNPs remain uncharacterized, and the amount and quality of DNA available from population-based samples are limited. We assessed how these real-world challenges influence automated SNP genotyping methods such as Illumina's GoldenGate assay. We examined 384 SNPs on canine chromosome 9 and successfully genotyped a minimum of 217 and a maximum of 275 SNPs using buccal swab samples for 181 dogs (86 beagles, 76 border collies, and 15 Australian shepherds). Call rates per SNP and sample averaged 97%, with reproducibility within and between analyses averaging 98%. The majority of these SNPs were polymorphic across all 3 breeds. We observed extensive LD, albeit less than reported for surveys using fewer dogs, consistent between breeds. Analyses of population substructure indicated that beagles are distinct from border collies and Australian shepherds. These results demonstrate the suitability of amplified canine buccal samples for high-throughput multiplex genotyping and confirm extensive LD in the dog.  相似文献   

15.
Single nucleotide polymorphisms (SNPs) are indispensable in such applications as association mapping and construction of high-density genetic maps. These applications usually require genotyping of thousands of SNPs in a large number of individuals. Although a number of SNP genotyping assays are available, most of them are designed for SNP genotyping in diploid individuals. Here, we demonstrate that the Illumina GoldenGate assay could be used for SNP genotyping of homozygous tetraploid and hexaploid wheat lines. Genotyping reactions could be carried out directly on genomic DNA without the necessity of preliminary PCR amplification. A total of 53 tetraploid and 38 hexaploid homozygous wheat lines were genotyped at 96 SNP loci. The genotyping error rate estimated after removal of low-quality data was 0 and 1% for tetraploid and hexaploid wheat, respectively. Developed SNP genotyping assays were shown to be useful for genotyping wheat cultivars. This study demonstrated that the GoldenGate assay is a very efficient tool for high-throughput genotyping of polyploid wheat, opening new possibilities for the analysis of genetic variation in wheat and dissection of genetic basis of complex traits using association mapping approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Single nucleotide polymorphisms (SNPs) have gained wide use in humans and model species and are becoming the marker of choice for applications in other species. Technology that was developed for work in model species may provide useful tools for SNP discovery and genotyping in non-model organisms. However, SNP discovery can be expensive, labour intensive, and introduce ascertainment bias. In addition, the most efficient approaches to SNP discovery will depend on the research questions that the markers are to resolve as well as the focal species. We discuss advantages and disadvantages of several past and recent technologies for SNP discovery and genotyping and summarize a variety of SNP discovery and genotyping studies in ecology and evolution.  相似文献   

17.
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variations amongst species. With the genome‐wide SNP discovery, many genome‐wide association studies are likely to identify multiple genetic variants that are associated with complex diseases. However, genotyping all existing SNPs for a large number of samples is still challenging even though SNP arrays have been developed to facilitate the task. Therefore, it is essential to select only informative SNPs representing the original SNP distributions in the genome (tag SNP selection) for genome‐wide association studies. These SNPs are usually chosen from haplotypes and called haplotype tag SNPs (htSNPs). Accordingly, the scale and cost of genotyping are expected to be largely reduced. We introduce binary particle swarm optimization (BPSO) with local search capability to improve the prediction accuracy of STAMPA. The proposed method does not rely on block partitioning of the genomic region, and consistently identified tag SNPs with higher prediction accuracy than either STAMPA or SVM/STSA. We compared the prediction accuracy and time complexity of BPSO to STAMPA and an SVM‐based (SVM/STSA) method using publicly available data sets. For STAMPA and SVM/STSA, BPSO effective improved prediction accuracy for smaller and larger scale data sets. These results demonstrate that the BPSO method selects tag SNP with higher accuracy no matter the scale of data sets is used. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
Genome-wide association (GWA) studies are currently one of the most powerful tools in identifying disease-associated genes or variants. In typical GWA studies, single-nucleotide polymorphisms (SNPs) are often used as genetic makers. Therefore, it is critical to estimate the percentage of genetic variations which can be covered by SNPs through linkage disequilibrium (LD). In this study, we use the concept of haplotype blocks to evaluate the coverage of five SNP sets including the HapMap and four commercial arrays, for every exon in the human genome. We show that although some Chips can reach similar coverage as the HapMap, only about 50% of exons are completely covered by haplotype blocks of HapMap SNPs. We suggest further high-resolution genotyping methods are required, to provide adequate genome-wide power for identifying variants.  相似文献   

19.
Kiwifruit (Actinidia spp) is a woody, perennial and deciduous vine. In this genus, there are multiple ploidy levels but the main cultivated cultivars are polyploid. Despite the availability of many genomic resources in kiwifruit, SNP genotyping is still a challenge given these different levels of polyploidy. Recent advances in SNP array technologies have offered a high-throughput genotyping platform for genome-wide DNA polymorphisms. In this study, we developed a high-density SNP genotyping array to facilitate genetic studies and breeding applications in kiwifruit. SNP discovery was performed by genome-wide DNA sequencing of 40 kiwifruit genotypes. The identified SNPs were stringently filtered for sequence quality, predicted conversion performance and distribution over the available Actinidia chinensis genome. A total of 134 729 unique SNPs were put on the array. The array was evaluated by genotyping 400 kiwifruit individuals. We performed a multidimensional scaling analysis to assess the diversity of kiwifruit germplasm, showing that the array was effective to distinguish kiwifruit accessions. Using a tetraploid F1 population, we constructed an integrated linkage map covering 3060.9 cM across 29 linkage groups and performed QTL analysis for the sex locus that has been identified on Linkage Group 3 (LG3) in Actinidia arguta. Finally, our dataset presented evidence of tetrasomic inheritance with partial preferential pairing in A. arguta. In conclusion, we developed and evaluated a 135K SNP genotyping array for kiwifruit. It has the advantage of a comprehensive design that can be an effective tool in genetic studies and breeding applications in this high-value crop.  相似文献   

20.
Association studies in populations that are genetically heterogeneous can yield large numbers of spurious associations if population subgroups are unequally represented among cases and controls. This problem is particularly acute for studies involving pooled genotyping of very large numbers of single-nucleotide-polymorphism (SNP) markers, because most methods for analysis of association in structured populations require individual genotyping data. In this study, we present several strategies for matching case and control pools to have similar genetic compositions, based on ancestry information inferred from genotype data for approximately 300 SNPs tiled on an oligonucleotide-based genotyping array. We also discuss methods for measuring the impact of population stratification on an association study. Results for an admixed population and a phenotype strongly confounded with ancestry show that these simple matching strategies can effectively mitigate the impact of population stratification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号