首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

SUMMARY

Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism.  相似文献   

2.
Human metapneumovirus and respiratory syncytial virus are RNA viruses associated with lower respiratory tract infections. Regular symptomatic re-infection and sequelae are common, particularly in individuals with pre-existing respiratory diseases, such as asthma. Our understanding of virus-dependent cytokine responses and potential differences between allergic asthmatics and non-asthmatics is limited. To test our hypothesis that adults with mild allergic asthma, the most common form of this disease, exhibit distinct pro-inflammatory responses, we developed a model using acute in vitro infection of fresh peripheral blood mononuclear cells. For both viruses, the production of innate-immunity-associated IL-6 and IL-10 was indistinguishable in the 2 populations. Type 1 cytokine production dominated adaptive immune responses in both asthmatic and non-asthmatic individuals. Surprisingly, asthmatics exhibited stronger pro-inflammatory IFNgamma production in response to human metapneumovirus than non-asthmatic adults (p = 0.01), with a similar, but statistically nonsignificant trend in the respiratory-syncytial-virus-stimulated response. Neutralizing IL-10 did not enhance the intensity of IFNgamma responses, demonstrating that this pro-inflammatory bias is not counter-regulated by IL-10. Finally, anti-TLR4 blocked lipopolysaccharide, but not respiratory-syncytial-virus-driven cytokine production. Collectively, the data demonstrate that asthma is characterized by markedly stronger pro-inflammatory IFNgamma responses to pneumoviruses than their non-asthmatic counterparts. This distinctive pattern of viral immunity may contribute to a worsening of asthma symptoms during respiratory virus infections.  相似文献   

3.
Viruses are the most frequent cause of respiratory disease in children. However, despite the advanced diagnostic methods currently in use, in 20 to 50% of respiratory samples a specific pathogen cannot be detected. In this work, we used a metagenomic approach and deep sequencing to examine respiratory samples from children with lower and upper respiratory tract infections that had been previously found negative for 6 bacteria and 15 respiratory viruses by PCR. Nasal washings from 25 children (out of 250) hospitalized with a diagnosis of pneumonia and nasopharyngeal swabs from 46 outpatient children (out of 526) were studied. DNA reads for at least one virus commonly associated to respiratory infections was found in 20 of 25 hospitalized patients, while reads for pathogenic respiratory bacteria were detected in the remaining 5 children. For outpatients, all the samples were pooled into 25 DNA libraries for sequencing. In this case, in 22 of the 25 sequenced libraries at least one respiratory virus was identified, while in all other, but one, pathogenic bacteria were detected. In both patient groups reads for respiratory syncytial virus, coronavirus-OC43, and rhinovirus were identified. In addition, viruses less frequently associated to respiratory infections were also found. Saffold virus was detected in outpatient but not in hospitalized children. Anellovirus, rotavirus, and astrovirus, as well as several animal and plant viruses were detected in both groups. No novel viruses were identified. Adding up the deep sequencing results to the PCR data, 79.2% of 250 hospitalized and 76.6% of 526 ambulatory patients were positive for viruses, and all other children, but one, had pathogenic respiratory bacteria identified. These results suggest that at least in the type of populations studied and with the sampling methods used the odds of finding novel, clinically relevant viruses, in pediatric respiratory infections are low.  相似文献   

4.
Respiratory viruses such as influenza viruses, respiratory syncytial virus (RSV), and coronaviruses initiate infection at the mucosal surfaces of the upper respiratory tract (URT), where the resident respiratory microbiome has an important gatekeeper function. In contrast to gut-targeting administration of beneficial bacteria against respiratory viral disease, topical URT administration of probiotics is currently underexplored, especially for the prevention and/or treatment of viral infections. Here, we report the formulation of a throat spray with live lactobacilli exhibiting several in vitro mechanisms of action against respiratory viral infections, including induction of interferon regulatory pathways and direct inhibition of respiratory viruses. Rational selection of Lactobacillaceae strains was based on previously documented beneficial properties, up-scaling and industrial production characteristics, clinical safety parameters, and potential antiviral and immunostimulatory efficacy in the URT demonstrated in this study. Using a three-step selection strategy, three strains were selected and further tested in vitro antiviral assays and in formulations: Lacticaseibacillus casei AMBR2 as a promising endogenous candidate URT probiotic with previously reported barrier-enhancing and anti-pathogenic properties and the two well-studied model strains Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum WCFS1 that display immunomodulatory capacities. The three strains and their combination significantly reduced the cytopathogenic effects of RSV, influenza A/H1N1 and B viruses, and HCoV-229E coronavirus in co-culture models with bacteria, virus, and host cells. Subsequently, these strains were formulated in a throat spray and human monocytes were employed to confirm the formulation process did not reduce the interferon regulatory pathway-inducing capacity. Administration of the throat spray in healthy volunteers revealed that the lactobacilli were capable of temporary colonization of the throat in a metabolically active form. Thus, the developed spray with live lactobacilli will be further explored in the clinic as a potential broad-acting live biotherapeutic strategy against respiratory viral diseases.  相似文献   

5.
At the end of 2019 Wuhan witnessed an outbreak of “atypical pneumonia” that later developed into a global pandemic. Metagenomic sequencing rapidly revealed the causative agent of this outbreak to be a novel coronavirus denoted SARS-CoV-2. To provide a snapshot of the pathogens in pneumonia-associated respiratory samples from Wuhan prior to the emergence of SARS-CoV-2, we collected bronchoalveolar lavage fluid samples from 408 patients presenting with pneumonia and acute respiratory infections at the Central Hospital of Wuhan between 2016 and 2017. Unbiased total RNA sequencing was performed to reveal their “total infectome”, including viruses, bacteria and fungi. We identified 35 pathogen species, comprising 13 RNA viruses, 3 DNA viruses, 16 bacteria and 3 fungi, often at high abundance and including multiple co-infections (13.5%). SARS-CoV-2 was not present. These data depict a stable core infectome comprising common respiratory pathogens such as rhinoviruses and influenza viruses, an atypical respiratory virus (EV-D68), and a single case of a sporadic zoonotic pathogen–Chlamydia psittaci. Samples from patients experiencing respiratory disease on average had higher pathogen abundance than healthy controls. Phylogenetic analyses of individual pathogens revealed multiple origins and global transmission histories, highlighting the connectedness of the Wuhan population. This study provides a comprehensive overview of the pathogens associated with acute respiratory infections and pneumonia, which were more diverse and complex than obtained using targeted PCR or qPCR approaches. These data also suggest that SARS-CoV-2 or closely related viruses were absent from Wuhan in 2016–2017.  相似文献   

6.
Historically, coronaviruses were predominantly associated with mild upper respiratory disease in humans. More recently, three novel coronaviruses associated with severe human respiratory disease were found, including (i) the severe acute respiratory syndrome coronavirus, associated with a significant atypical pneumonia and 10% mortality; (ii) HKU-1, associated with chronic pulmonary disease; and (iii) NL63, associated with both upper and lower respiratory tract disease in children and adults worldwide. These discoveries establish coronaviruses as important human pathogens and underscore the need for continued research toward the development of platforms that will enable genetic manipulation of the viral genome, allowing for rapid and rational development and testing of candidate vaccines, vaccine vectors, and therapeutics. In this report, we describe a reverse genetics system for NL63, whereby five contiguous cDNAs that span the entire genome were used to generate a full-length cDNA. Recombinant NL63 viruses which contained the expected marker mutations replicated as efficiently as the wild-type NL63 virus. In addition, we engineered the heterologous green fluorescent protein gene in place of open reading frame 3 (ORF3) of the NL63 clone, simultaneously creating a unique marker for NL63 infection and demonstrating that the ORF3 protein product is nonessential for the replication of NL63 in cell culture. The availability of the NL63 and NL63gfp clones and recombinant viruses provides powerful tools that will help advance our understanding of this important human pathogen.  相似文献   

7.
路雅菲  薛江东  毕玉海 《微生物学报》2022,62(12):4731-4739
流感病毒包括甲(A)、乙(B)、丙(C)和丁(D)四种型。人流行性感冒是由甲型和乙型季节性流感病毒引起的一种急性呼吸道传染病。流感病毒感染患者主要表现出呼吸道症状,严重时可以导致肺炎。此外,与其他病毒、细菌和支原体等病原体混合或继发感染时,会增加流感患者的重症率和死亡率。近几年,流感病毒与其他病原协同感染的病例有增加趋势。本文归纳总结了流感病毒与其他病原混合及继发感染的研究现状,希望为流感病毒复杂感染情况的临床诊断和治疗方案的制定提供线索。  相似文献   

8.
The emergence of influenza viruses resistant to existing classes of antiviral drugs raises concern and there is a need for novel antiviral agents that could be used therapeutically or prophylacticaly. Surfactant protein D (SP-D) belongs to the family of C-type lectins which are important effector molecules of the innate immune system with activity against bacteria and viruses, including influenza viruses. In the present study we evaluated the potential of recombinant porcine SP-D as an antiviral agent against influenza A viruses (IAVs) in vitro. To determine the range of antiviral activity, thirty IAVs of the subtypes H1N1, H3N2 and H5N1 that originated from birds, pigs and humans were selected and tested for their sensitivity to recombinant SP-D. Using these viruses it was shown by hemagglutination inhibition assay, that recombinant porcine SP-D was more potent than recombinant human SP-D and that especially higher order oligomeric forms of SP-D had the strongest antiviral activity. Porcine SP-D was active against a broad range of IAV strains and neutralized a variety of H1N1 and H3N2 IAVs, including 2009 pandemic H1N1 viruses. Using tissue sections of ferret and human trachea, we demonstrated that recombinant porcine SP-D prevented attachment of human seasonal H1N1 and H3N2 virus to receptors on epithelial cells of the upper respiratory tract. It was concluded that recombinant porcine SP-D holds promise as a novel antiviral agent against influenza and further development and evaluation in vivo seems warranted.  相似文献   

9.
Several chronic viral infections (such as HIV and hepatitis C virus) are highly prevalent and are a serious health risk. The adaptation of animal viruses to the human host, as recently exemplified by influenza viruses and the severe acute respiratory syndrome coronavirus, is also a continuous threat. There is a high demand, therefore, for new antiviral lead compounds and novel therapeutic concepts. In this Review, an original therapeutic concept for suppressing enveloped viruses is presented that is based on a specific interaction of carbohydrate-binding agents (CBAs) with the glycans present on viral-envelope glycoproteins. This approach may also be extended to other pathogens, including parasites, bacteria and fungi.  相似文献   

10.
11.
Before 2003, only occasional case reports of human H7 influenza virus infections occurred as a result of direct animal-to-human transmission or laboratory accidents; most of these infections resulted in conjunctivitis. An increase in isolation of avian influenza A H7 viruses from poultry outbreaks and humans has raised concerns that additional zoonotic transmissions of influenza viruses from poultry to humans may occur. To better understand the pathogenesis of H7 viruses, we have investigated their ability to cause disease in mouse and ferret models. Mice were infected intranasally with H7 viruses of high and low pathogenicity isolated from The Netherlands in 2003 (Netherlands/03), the northeastern United States in 2002-2003, and Canada in 2004 and were monitored for morbidity, mortality, viral replication, and proinflammatory cytokine production in respiratory organs. All H7 viruses replicated efficiently in the respiratory tracts of mice, but only Netherlands/03 isolates replicated in systemic organs, including the brain. Only A/NL/219/03 (NL/219), an H7N7 virus isolated from a single fatal human case, was highly lethal for mice and caused severe disease in ferrets. Supporting the apparent ocular tropism observed in humans following infection with viruses of the H7 subtype, both Eurasian and North American lineage H7 viruses were detected in the mouse eye following ocular inoculation, whereas an H7N2 virus isolated from the human respiratory tract was not. Therefore, in general, the relative virulence and cell tropism of the H7 viruses in these animal models correlated with the observed virulence in humans.  相似文献   

12.
Taguchi F 《Uirusu》2006,56(2):165-171
Coronaviruses infect many species of animals, including humans. Among them, murine coronavirus, mouse hepatitis virus (MHV) has been well studied as a model of human diseases, such as hepatitis and demyelinating disease. An agent causing severe acute respiratory disease (SARS), SARS coronavirus (SARS-CoV), is a newcomer in this genus, however, it is now one of the most studied coronaviruses due to its medical impact. The receptors of those two viruses have been identified and their cell entry mechanism has been actively investigated. Recently, SARS-CoV cell entry mechanism is shown to be different from that of other enveloped viruses, including MHV. In this review, cell entry mechanism of those two viruses is described, stressing on the difference and similarity found between those two viruses.  相似文献   

13.
Pathogenesis of avian influenza A (H5N1) viruses in ferrets   总被引:19,自引:0,他引:19  
Highly pathogenic avian influenza A H5N1 viruses caused outbreaks of disease in domestic poultry and humans in Hong Kong in 1997. Direct transmission of the H5N1 viruses from birds to humans resulted in 18 documented cases of respiratory illness, including six deaths. Here we evaluated two of the avian H5N1 viruses isolated from humans for their ability to replicate and cause disease in outbred ferrets. A/Hong Kong/483/97 virus was isolated from a fatal case and was highly pathogenic in the BALB/c mouse model, whereas A/Hong Kong/486/97 virus was isolated from a case with mild illness and exhibited a low-pathogenicity phenotype in mice. Ferrets infected intranasally with 10(7) 50% egg infectious doses (EID(50)) of either H5N1 virus exhibited severe lethargy, fever, weight loss, transient lymphopenia, and replication in the upper and lower respiratory tract, as well as multiple systemic organs, including the brain. Gastrointestinal symptoms were seen in some animals. In contrast, weight loss and severe lethargy were not noted in ferrets infected with 10(7) EID(50) of two recent human H3N2 viruses, although these viruses were also isolated from the brains, but not other extrapulmonary organs, of infected animals. The results demonstrate that both H5N1 viruses were highly virulent in the outbred ferret model, unlike the differential pathogenicity documented in inbred BALB/c mice. We propose the ferret as an alternative model system for the study of these highly pathogenic avian viruses.  相似文献   

14.
The paramyxoviruses define a diverse group of enveloped RNA viruses that includes a number of important human and animal pathogens. Examples include human respiratory syncytial virus and the human parainfluenza viruses, which cause respiratory illnesses in young children and the elderly; measles and mumps viruses, which have caused recent resurgences of disease in developed countries; the zoonotic Hendra and Nipah viruses, which have caused several outbreaks of fatal disease in Australia and Asia; and Newcastle disease virus, which infects chickens and other avian species. Like other enveloped viruses, paramyxoviruses form particles that assemble and bud from cellular membranes, allowing the transmission of infections to new cells and hosts. Here, we review recent advances that have improved our understanding of events involved in paramyxovirus particle formation. Contributions of viral matrix proteins, glycoproteins, nucleocapsid proteins, and accessory proteins to particle formation are discussed, as well as the importance of host factor recruitment for efficient virus budding. Trafficking of viral structural components within infected cells is described, together with mechanisms that allow for the selection of specific sites on cellular membranes for the coalescence of viral proteins in preparation of bud formation and virion release.  相似文献   

15.
Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13?977 streptococcal CRISPR sequences and compared them with 2?588?172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome.  相似文献   

16.
Secondary bacterial infections often complicate respiratory viral infections, but the mechanisms whereby viruses predispose to bacterial disease are not completely understood. We determined the effects of infection with respiratory syncytial virus (RSV), human parainfluenza virus 3 (HPIV-3), and influenza virus on the abilities of nontypeable Haemophilus influenzae and Streptococcus pneumoniae to adhere to respiratory epithelial cells and how these viruses alter the expression of known receptors for these bacteria. All viruses enhanced bacterial adhesion to primary and immortalized cell lines. RSV and HPIV-3 infection increased the expression of several known receptors for pathogenic bacteria by primary bronchial epithelial cells and A549 cells but not by primary small airway epithelial cells. Influenza virus infection did not alter receptor expression. Paramyxoviruses augmented bacterial adherence to primary bronchial epithelial cells and immortalized cell lines by up-regulating eukaryotic cell receptors for these pathogens, whereas this mechanism was less significant in primary small airway epithelial cells and in influenza virus infections. Respiratory viruses promote bacterial adhesion to respiratory epithelial cells, a process that may increase bacterial colonization and contribute to disease. These studies highlight the distinct responses of different cell types to viral infection and the need to consider this variation when interpreting studies of the interactions between respiratory cells and viral pathogens.  相似文献   

17.
Pneumoviruses have been identified as causative agents in several respiratory disease outbreaks in habituated wild great apes. Based on phylogenetic evidence, transmission from humans is likely. However, the pathogens have never been detected in the local human population prior to or at the same time as an outbreak. Here, we report the first simultaneous detection of a human respiratory syncytial virus (HRSV) infection in western lowland gorillas (Gorilla gorilla gorilla) and in the local human population at a field program in the Central African Republic. A total of 15 gorilla and 15 human fecal samples and 80 human throat swabs were tested for HRSV, human metapneumovirus, and other respiratory viruses. We were able to obtain identical sequences for HRSV A from four gorillas and four humans. In contrast, we did not detect HRSV or any other classic human respiratory virus in gorilla fecal samples in two other outbreaks in the same field program. Enterovirus sequences were detected but the implication of these viruses in the etiology of these outbreaks remains speculative. Our findings of HRSV in wild but human-habituated gorillas underline, once again, the risk of interspecies transmission from humans to endangered great apes.  相似文献   

18.
Respiratory viruses represent one of the most substantial infectious disease burdens to the human population today, and in particular, seasonal and pandemic influenza viruses pose a persistent threat to public health worldwide. In recent years, advances in techniques used in experimental research have provided the means to better understand the mechanisms of pathogenesis and transmission of respiratory viruses, and thus more accurately model these infections in the laboratory. Here, we briefly review the model systems used to study influenza virus infections, and focus particularly on recent advances that have increased our knowledge of these formidable respiratory pathogens.  相似文献   

19.

Background

Viral respiratory infection has long been known to influence the occurrence of asthma exacerbations. Over the last 20 years much effort has been put into clarifying the role that viral respiratory infections play in the eventual development of asthma.

Scope of review

In this review we give a general background of the role of viruses in the processes of asthma exacerbation and asthma induction. We review recent additions to the literature in the last 3 years with particular focus on clinical and epidemiologic investigations of influenza, rhinovirus, bocavirus, respiratory syncytial virus, and metapneumovirus.

Major conclusions

The development of asthma emerges from a complex interaction of genetic predisposition and environmental factors with viral infection likely playing a significant role in the effect of environment on asthma inception. This article is part of a Special Issue entitled: Biochemistry of Asthma.

General significance

Further understanding of the role that viruses play in asthma exacerbation and inception will contribute to decreased asthma morbidity in the future. This article is part of a Special Issue entitled: Biochemistry of Asthma.  相似文献   

20.
目的

了解哮喘患儿呼吸道菌群多样性及其组成特征, 同时研究所分离的3株优势菌对流感嗜血杆菌的抑制作用, 探究哮喘与呼吸道菌群之间的关系。

方法

采集沈阳市儿童医院呼吸内科2019年3月至2019年12月收治的21例4~12岁急性发作期哮喘患儿咽拭标本, 并同时采集23例同龄健康儿童的咽拭标本作为对照, 对呼吸道菌群进行分离培养、纯化和16S rRNA鉴定。采用牛津杯法检测健康儿童口咽部分离的3株优势菌对流感嗜血杆菌的拮抗作用。

结果

哮喘和健康儿童呼吸道培养出的需氧菌(t=2.143, P=0.038)和厌氧菌(t=3.270, P=0.002)的密度差异有统计学意义。哮喘患儿咽部需氧菌以肺炎链球菌和流感嗜血杆菌为主, 厌氧菌以韦荣球菌为主。健康儿童咽部需氧菌以缓症链球菌和口腔链球菌为主, 厌氧菌以干酪乳杆菌为主。健康儿童口咽部的3株优势菌对哮喘儿童口咽部流感嗜血杆菌的生长具有显著抑制作用。

结论

与健康儿童相比, 哮喘患儿口咽部菌群发生紊乱, 且哮喘患儿口咽部需氧菌、厌氧菌密度显著增加。健康儿童口咽部的某些优势菌可能对哮喘致病菌的定植有一定的拮抗作用。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号