首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Fasciola hepatica, along with Fasciola gigantica, is the causative agent of fasciolosis, a foodborne zoonotic disease affecting grazing animals and humans worldwide. Pathology is directly related to the release of parasite proteins that facilitate establishment within the host. The dominant components of these excretory-secretory (ES) products are also the most promising vaccine candidates, the cathepsin L (Cat L) protease family.

Methodology/Principal Findings

The sub-proteome of Cat L proteases from adult F. hepatica ES products derived from in vitro culture and in vivo from ovine host bile were compared by 2-DE. The individual Cat L proteases were identified by tandem mass spectrometry with the support of an in-house translated liver fluke EST database. The study reveals plasticity within the CL1 clade of Cat L proteases; highlighted by the identification of a novel isoform and CL1 sub-clade, resulting in a new Cat L phylogenetic analysis including representatives from other adult Cat L phylogenetic clades. Additionally, for the first time, mass spectrometry was shown to be sufficiently sensitive to reveal single amino acid polymorphisms in a resolved 2-DE protein spot derived from pooled population samples.

Conclusions/Significance

We have investigated the sub-proteome at the population level of a vaccine target family using the Cat L proteases from F. hepatica as a case study. We have confirmed that F. hepatica exhibits more plasticity in the expression of the secreted CL1 clade of Cat L proteases at the protein level than previously realised. We recommend that superfamily based vaccine discovery programmes should screen parasite populations from different host populations and, if required, different host species via sub-proteomic assay in order to confirm the relative expression at the protein level prior to the vaccine development phase.  相似文献   

3.
The parasite Fasciola hepatica causes major global disease of livestock, with increasing reports of human infection. Vaccine candidates with varying protection rates have been identified by pre-genomic approaches. As many candidates are part of protein superfamilies, sub-proteomics offers new possibilities to systematically reveal the relative importance of individual family proteins to vaccine formulations within populations. The superfamily glutathione transferase (GST) from liver fluke has phase II detoxification and housekeeping roles, and has been shown to contain protective vaccine candidates. GST were purified from cytosolic fractions of adult flukes using glutathione- and S-hexylglutathione-agarose, separated by 2-DE, and identified by MS/MS, with the support of a liver fluke EST database. All previously described F. hepatica GST isoforms were identified in 2-DE. Amongst the isoforms mapped by 2-DE, a new GST, closely related to the Sigma class enzymes is described for the first time in the liver fluke. We also describe cDNA encoding putative Omega class GST in F. hepatica.  相似文献   

4.
The liver fluke Fasciola hepatica is an economically important pathogen of livestock worldwide, as well as being an important neglected zoonosis. Parasite control is reliant on the use of drugs, particularly triclabendazole, which is effective against multiple parasite stages. However, the spread of parasites resistant to triclabendazole has intensified the pursuit for novel control strategies. Emerging 'omics' technologies are helping advance our understanding of liver fluke biology, specifically the molecules that act at the host-parasite interface and are central to infection, virulence and long-term survival within the definitive host. This review discusses the technological sequencing advances that have facilitated the unbiased analysis of liver fluke biology, resulting in an extensive range of ‘omics’ datasets. In addition, we highlight the ‘omics’ studies of host responses to F. hepatica infection that, when combined with the parasite datasets, provide the opportunity for integrated analyses of host-parasite interactions. These extensive datasets will form the foundation for future in-depth analysis of F. hepatica biology and development, and the search for new drug or vaccine interventions.  相似文献   

5.

Background

The Atlixco municipality, Puebla State, at a mean altitude of 1840 m, was selected for a study of Fasciola hepatica infection in schoolchildren in Mexico. This area presents permanent water collections continuously receiving thaw water from Popocatepetl volcano (5426 m altitude) through the community supply channels, conforming an epidemiological scenario similar to those known in hyperendemic areas of Andean countries.

Methodology and Findings

A total of 865 6–14 year-old schoolchildren were analyzed with FasciDIG coproantigen test and Lumbreras rapid sedimentation technique, and quantitatively assessed with Kato-Katz. Fascioliasis prevalences ranged 2.94–13.33% according to localities (mean 5.78%). Intensities were however low (24–384 epg). The association between fascioliasis and the habit of eating raw vegetables was identified, including watercress and radish with pronouncedly higher relative risk than lettuce, corncob, spinach, alfalfa juice, and broccoli. Many F. hepatica-infected children were coinfected by other parasites. Entamoeba histolytica/dispar, Giardia intestinalis, Blastocystis hominis, Hymenolepis nana and Ascaris lumbricoides infection resulted in risk factors for F. hepatica infection. Nitazoxanide efficacy against fascioliasis was 94.0% and 100% after first and second treatment courses, respectively. The few children, for whom a second treatment course was needed, were concomitantly infected by moderate ascariasis burdens. Its efficacy was also very high in the treatment of E. histolytica/E. dispar, G. intestinalis, B. hominis, H. nana, A. lumbricoides, Trichuris trichiura, and Enterobius vermicularis. A second treatment course was needed for all children affected by ancylostomatids.

Conclusions

Fascioliasis prevalences indicate this area to be mesoendemic, with isolated hyperendemic foci. This is the first time that a human fascioliasis endemic area is described in North America. Nitazoxanide appears as an appropriate alternative to triclabendazole, the present drug of choice for chronic fascioliasis. Its wide spectrum efficacy against intestinal protozooses and helminthiasis, usually coinfecting liver fluke infected subjects in human endemic areas, represents an important added value.  相似文献   

6.

Background

Human fasciolosis is a re-emerging disease worldwide and is caused by species of the genus Fasciola (F. hepatica and F. gigantica). Human fasciolosis can be diagnosed by classical coprological techniques, such as the Kato-Katz test, to reveal parasite eggs in faeces. However, although 100% specific, these methods are generally not adequate for detection of acute infections, ectopic infections, or infections with low number of parasites. In such cases immunological methods may be a good alternative and are recommended for use in major hospitals where trained personnel are available, although they are not usually implemented for individual testing.

Methodology/Principal Findings

We have developed a new lateral flow test (SeroFluke) for the serodiagnosis of human fasciolosis. The new test was constructed with a recombinant cathepsin L1 from F. hepatica, and uses protein A and mAb MM3 as detector reagents in the test and control lines, respectively. In comparison with an ELISA test (MM3-SERO) the SeroFluke test showed maximal specificity and sensitivity and can be used with serum or whole blood samples.

Conclusions/Significance

The new test can be used in major hospitals in hypoendemic countries as well as in endemic/hyperendemic regions where point-of-care testing is required.  相似文献   

7.

Background

The human liver fluke, Opisthorchis viverrini, is designated as a group 1 carcinogen, and is the major risk factor for cholangiocarcinoma in endemic countries throughout Southeast Asia. Proteins in the excretory-secretory products and tegumental surface membranes of the fluke have been proposed to play pivotal roles in parasite survival in the host, and subsequent pathogenesis. These macromolecules are therefore valid targets for the development of vaccines and new drugs to control the infection. Tetraspanins (TSP) are prominent components of the tegument of blood flukes where they are essential for tegument formation, are directly exposed to the immune system, and are major targets for a schistosomiasis vaccine. We propose that similar molecules in the surface membranes of O. viverrini are integral to tegument biogenesis and will be efficacious vaccine antigens.

Methodology/Principal Findings

The cDNA sequence encoding O. viverrini tetraspanin-1 (Ov-TSP-1) was identified and cloned. The Ov-tsp-1gene was isolated from a cDNA library. Ov-tsp-1 mRNA was expressed most highly in metacercariae and eggs, and to a lesser extent in juvenile and adult worms. Immunolocalization with adult flukes confirmed that Ov-TSP-1 was expressed in the tegument and eggs in utero. Western blot analysis of rOv-TSP-1 probed with sera from O. viverrini-infected humans and hamsters indicated that both hosts raise antibody responses against the native TSP. Using RNA interference we silenced the expression level of Ov-tsp-1 mRNA in adult flukes by up to 72% by 10 days after delivery of dsRNA. Ultrastructural morphology of adult worms treated with Ov-tsp-1 dsRNA displayed a distinctly vacuolated and thinner tegument compared with controls.

Conclusions/Significance

This is the first report of a tetraspanin from the tegument of a liver fluke. Our data imply that tetraspanins play important structural roles in the development of the tegument in the adult fluke. Potential uses of O. viverrini tetraspanins as novel interventions are discussed.  相似文献   

8.
9.

Background

Lymnaeid snails transmit medical and veterinary important trematodiases, mainly fascioliasis. Vector specificity of fasciolid parasites defines disease distribution and characteristics. Different lymnaeid species appear linked to different transmission and epidemiological patterns. Pronounced susceptibility differences to absolute resistance have been described among lymnaeid populations. When assessing disease characteristics in different endemic areas, unexpected results were obtained in studies on lymnaeid susceptibility to Fasciola. We undertook studies to understand this disease transmission heterogeneity.

Methodology/Principal Findings

A ten-year study in Iran, Egypt, Spain, the Dominican Republic, Mexico, Venezuela, Ecuador and Peru, demonstrated that such heterogeneity is not due to susceptibility differences, but to a hitherto overlooked cryptic species, Lymnaea schirazensis, confused with the main vector Galba truncatula and/or other Galba/Fossaria vectors. Nuclear rDNA and mtDNA sequences and phylogenetic reconstruction highlighted an old evolutionary divergence from other Galba/Fossaria species, and a low intraspecific variability suggesting a recent spread from one geographical source. Morphometry, anatomy and egg cluster analyses allowed for phenotypic differentiation. Selfing, egg laying, and habitat characteristics indicated a migration capacity by passive transport. Studies showed that it is not a vector species (n = 8572 field collected, 20 populations): snail finding and penetration by F. hepatica miracidium occur but never lead to cercarial production (n = 338 experimentally infected).

Conclusions/Significance

This species has been distorting fasciolid specificity/susceptibility and fascioliasis geographical distribution data. Hence, a large body of literature on G. truncatula should be revised. Its existence has henceforth to be considered in research. Genetic data on livestock, archeology and history along the 10,000-year post-domestication period explain its wide spread from the Neolithic Fertile Crescent. It is an efficient biomarker for the follow-up of livestock movements, a crucial aspect in fascioliasis emergence. It offers an outstanding laboratory model for genetic studies on susceptibility/resistance in F. hepatica/lymnaeid interaction, a field of applied research with disease control perspectives.  相似文献   

10.
11.

Background

The nature of the immune response to infection is dependent on the type of infecting organism. Intracellular organisms such as Toxoplasma gondii stimulate a Th1-driven response associated with production of IL-12, IFN-γ, nitric oxide and IgG2a antibodies and classical activation of macrophages. In contrast, extracellular helminths such as Fasciola hepatica induce Th2 responses characterised by the production of IL-4, IL-5, IL-10 and IgG1 antibodies and alternative activation of macrophages. As co-infections with these types of parasites commonly exist in the field it is relevant to examine how the various facets of the immune responses induced by each may influence or counter-regulate that of the other.

Principal Findings

Regardless, of whether F. hepatica infection preceded or succeeded T. gondii infection, there was little impact on the production of the Th1 cytokines IL-12, IFN-γ or on the development of classically-activated macrophages induced by T. gondii. By contrast, the production of helminth-specific Th2 cytokines, such as IL-4 and IL-5, was suppressed by infection with T. gondii. Additionally, the recruitment and alternative activation of macrophages by F. hepatica was blocked or reversed by subsequent infection with T. gondii. The clinical symptoms of toxoplasmosis and the survival rate of infected mice were not significantly altered by the helminth.

Conclusions

Despite previous studies showing that F. hepatica suppressed the classical activation of macrophages and the Th1-driven responses of mice to bystander microbial infection, as well as reduced their ability to reject these, here we found that the potent immune responses to T. gondii were capable of suppressing the responses to helminth infection. Clearly, the outcome of particular infections in polyparasitoses depends on the means and potency by which each pathogen controls the immune response.  相似文献   

12.
13.

Background

Treatment of urinary schistosomiasis by chemotherapy remains challenging due to rapid re-infection and possibly to limited susceptibility to praziquantel treatment. Therefore, therapeutic vaccines represent an attractive alternative control strategy. The objectives of this study were to assess the safety and tolerability profile of the recombinant 28 kDa glutathione S-transferase of Schistosoma haematobium (rSh28GST) in healthy volunteers, and to determine its immunogenicity.

Methodology

Volunteers randomly received 100 µg rSh28GST together with aluminium hydroxide (Alum) as adjuvant (n = 8), or Alum alone as a comparator (n = 8), twice with a 28-day interval between doses. A third dose of rSh28GST or Alum alone was administered to this group at day 150. In view of the results obtained, another group of healthy volunteers (n = 8) received two doses of 300 µg of rSh28GST, again with a 28-day interval. A six-month follow-up was performed with both clinical and biological evaluations. Immunogenicity of the vaccine candidate was evaluated in terms of specific antibody production, the capacity of sera to inhibit enzymatic activity of the antigen, and in vitro cytokine production.

Principal Findings

Among the 24 healthy male participants no serious adverse events were reported in the days or weeks after administration. Four subjects under rSh28GST reported mild reactions at the injection site while a clinically insignificant increase in bilirubin was observed in 8/24 subjects. No hematological nor biochemical evidence of toxicity was detected. Immunological analysis showed that rSh28GST was immunogenic. The induced Th2-type response was characterized by antibodies capable of inhibiting the enzymatic activity of rSh28GST.

Conclusions

rSh28GST in Alum did not induce any significant toxicity in healthy adults and generated a Th2-type immune response. Together with previous preclinical results, the data of safety, tolerability and quality of the specific immune response provide evidence that clinical trials with rSh28GST could be continued in humans as a potential vaccine candidate against urinary schistosomiasis.  相似文献   

14.

Background

Toll-like receptor (TLR) ligands have been explored as vaccine adjuvants for tumor and virus immunotherapy, but few TLR ligands affecting schistosoma vaccines have been characterized. Previously, we developed a partially protective DNA vaccine encoding the 26-kDa glutathione S-transferase of Schistosoma japonicum (pVAX1-Sj26GST).

Methodology/Principal Findings

In this study, we evaluated a TLR7/8 ligand (R848) and a TLR9 ligand (CpG oligodeoxynucleotides, or CpG) as adjuvants for pVAX1-Sj26GST and assessed their effects on the immune system and protection against S. japonicum. We show that combining CpG and R848 with pVAX1-Sj26GST immunization significantly increases splenocyte proliferation and IgG and IgG2a levels, decreases CD4+CD25+Foxp3+ regulatory T cells (Treg) frequency in vivo, and enhances protection against S. japonicum. CpG and R848 inhibited Treg-mediated immunosuppression, upregulated the production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-10, IL-2, and IL-6, and decreased Foxp3 expression in vitro, which may contribute to prevent Treg suppression and conversion during vaccination and allow expansion of antigen-specific T cells against pathogens.

Conclusions

Our data shows that selective TLR ligands can increase the protective efficacy of DNA vaccines against schistosomiasis, potentially through combined antagonism of Treg-mediated immunosuppression and conversion.  相似文献   

15.
BackgroundTwo platyhelminths of biomedical and commercial significance are Schistosoma mansoni (blood fluke) and Fasciola hepatica (liver fluke). These related trematodes are responsible for the chronic neglected tropical diseases schistosomiasis and fascioliasis, respectively. As no vaccine is currently available for anti-flukicidal immunoprophylaxis, current treatment is mediated by mono-chemical chemotherapy in the form of mass drug administration (MDA) (praziquantel for schistosomiasis) or drenching (triclabendazole for fascioliasis) programmes. This overreliance on single chemotherapeutic classes has dramatically limited the number of novel chemical entities entering anthelmintic drug discovery pipelines, raising significant concerns for the future of sustainable blood and liver fluke control.

Methodology/ Principle Findings

Here we demonstrate that 7-keto-sempervirol, a diterpenoid isolated from Lycium chinense, has dual anthelmintic activity against related S. mansoni and F. hepatica trematodes. Using a microtiter plate-based helminth fluorescent bioassay (HFB), this activity is specific (Therapeutic index = 4.2, when compared to HepG2 cell lines) and moderately potent (LD50 = 19.1 μM) against S. mansoni schistosomula cultured in vitro. This anti-schistosomula effect translates into activity against both adult male and female schistosomes cultured in vitro where 7-keto-sempervirol negatively affects motility/behaviour, surface architecture (inducing tegumental holes, tubercle swelling and spine loss/shortening), oviposition rates and egg morphology. As assessed by the HFB and microscopic phenotypic scoring matrices, 7-keto-sempervirol also effectively kills in vitro cultured F. hepatica newly excysted juveniles (NEJs, LD50 = 17.7 μM). Scanning electron microscopy (SEM) evaluation of adult F. hepatica liver flukes co-cultured in vitro with 7-keto-sempervirol additionally demonstrates phenotypic abnormalities including breaches in tegumental integrity and spine loss.

Conclusions/ Significance

7-keto-sempervirol negatively affects the viability and phenotype of two related pathogenic trematodes responsible for significant human and animal infectious diseases. This plant-derived, natural product is also active against both larval and adult developmental forms. As such, the data collectively indicate that 7-keto-sempervirol is an important starting point for anthelmintic drug development. Medicinal chemistry optimisation of more potent 7-keto-sempervirol analogues could lead to the identification of novel chemical entities useful for future combinatorial or replacement anthelmintic control.  相似文献   

16.

Background

Fasciola hepatica infection still remains one of the helminthic neglected tropical diseases (NTDs). It has a huge worldwide distribution, affecting mainly cattle and, sometimes, human beings. In addition to data reported about the immunological response induced by helminthic infections and that induced by Fasciola hepatica, little is known about the gene expression profile in its organ target, the liver, which is where adult worms are established and live for long periods of time, causing its characteristic pathology. In the present work, we study both the early and late gene expression profiles in the livers of mice infected with F. hepatica metacercariae using a microarray-based methodology.

Methodology

A total of 9 female-6-week-old BALB/c mice (Charles River Laboratories, Barcelona, Spain) weighing 20 to 35 g were used for the experiments. Two groups of BALB/c mice were orally infected with seven F. hepatica metacercariae, and the other group remained untreated and served as a control. Mice were humanely euthanized and necropsied for liver recovery, histological assessment of hepatic damage, RNA isolation, microarray design and gene expression analysis on the day of infection (t0), seven days post-infection (t7) and twenty-one days post-infection (t21).

Results

We found that F. hepatica infection induces the differential expression of 128 genes in the liver in the early stage of infection and 308 genes in the late stage, and most of them are up-regulated. The Ingenuity Pathway Analysis revealed significant changes in the pathways related to metabolism, biosynthesis and signaling as well as genes implicated in inducing liver-toxicity, injury and death.

Conclusion

The present study provides us insights at the molecular level about the underlying mechanisms used by F. hepatica, leading to liver damage and its subsequent pathophysiology. The expression pattern obtained here could also be used to explain the lack of association between infection with F. hepatica and cholangiocarcinoma. However, more studies should be performed to confirm this hypothesis.  相似文献   

17.
18.
Fasciola hepatica, the liver fluke, is a trematode parasite of considerable economic importance to the livestock industry and is a re-emerging zoonosis that poses a risk to human health in F. hepatica-endemic areas worldwide. Drug resistance is a substantial threat to the current and future control of F. hepatica, yet little is known about how the biology of the parasite influences the development and spread of resistance. Given that F. hepatica can self-fertilise and therefore inbreed, there is the potential for greater population differentiation and an increased likelihood of recessive alleles, such as drug resistance genes, coming together. This could be compounded by clonal expansion within the snail intermediate host and aggregation of parasites of the same genotype on pasture. Alternatively, widespread movement of animals that typically occurs in the UK could promote high levels of gene flow and prevent population differentiation. We identified clonal parasites with identical multilocus genotypes in 61% of hosts. Despite this, 84% of 1579 adult parasites had unique multilocus genotypes, which supports high levels of genotypic diversity within F. hepatica populations. Our analyses indicate a selfing rate no greater than 2%, suggesting that this diversity is in part due to the propensity for F. hepatica to cross-fertilise. Finally, although we identified high genetic diversity within a given host, there was little evidence for differentiation between populations from different hosts, indicating a single panmictic population. This implies that, once those emerge, anthelmintic resistance genes have the potential to spread rapidly through liver fluke populations.  相似文献   

19.

Background

The impact on carriage and optimal schedule for primary vaccination of older children with 10-valent pneumococcal non-typeable Haemophilus influenzae protein-D conjugate vaccine (PHiD-CV) are unknown.

Methods

600 Kenyan children aged 12–59 months were vaccinated at days 0, 60 and 180 in a double-blind randomized controlled trial according to the following vaccine sequence: Group A: PHiD-CV, PHiD-CV, diphtheria/tetanus/acellular pertussis vaccine (DTaP); Group B: PHiD-CV, DTaP, PHiD-CV; Group C: hepatitis A vaccine (HAV), DTaP, HAV. Nasopharyngeal carriage of Streptococcus pneumoniae was measured at five timepoints. In 375 subjects, serotype-specific responses were measured by 22F-inhibition ELISA and opsonophagocytic killing assays (OPA) one month after vaccination.

Results

Following one dose of PHiD-CV, >90% of recipients developed IgG≥0.35 µg/mL to serotypes 1, 4, 5, 7F, 9V and 18C and OPA≥8 to serotypes 4, 7F, 9V, 18C, 23F. After a second dose >90% of recipients had IgG≥0.35 µg/mL to all vaccine serotypes and OPA≥8 to all vaccine serotypes except 1 and 6B. At day 180, carriage of vaccine-type pneumococci was 21% in recipients of two doses of PHiD-CV (Group A) compared to 31% in controls (p = 0.04). Fever after dose 1 was reported by 41% of PHiD-CV recipients compared to 26% of HAV recipients (p<0.001). Other local and systemic adverse experiences were similar between groups.

Conclusions

Vaccination of children aged 12–59 months with two doses of PHiD-CV two to six months apart was immunogenic, reduced vaccine-type pneumococcal carriage and was well-tolerated. Administration of PHiD-CV would be expected to provide effective protection against vaccine-type disease.

Trial Registration

ClinicalTrials.gov NCT01028326  相似文献   

20.

Background:

Mycobacterium (M.) bovis is the agent of bovine tuberculosis (TB) in a range of animal species, including humans. Recent advances in immunology and the molecular biology of Mycobacterium have allowed identification of a large number of antigens with the potential for the development of a new TB vaccine. The ESAT-6 and CFP-10 proteins of M. bovis are important structural and functional proteins known to be important immunogens.

Methods:

In the current study, the DNAs encoding these genes were utilized in the construction of pcDNA 3.1+/ESAT-6 and pcDNA3.1+/CFP-10 plasmids. After intramuscular injection of BALB/c mice with these plasmids, ESAT-6 and CFP-10 mRNA expression was assessed by RT-PCR. Mice were inoculated and boosted with the plasmids to evaluate their effects on lymphocyte proliferation.

Results:

Our results indicate the plasmids are expressed at the RNA level and can induce lymphocyte proliferation.

Conclusion:

Further study is needed to characterize the effect of these antigens on the immune system and determine whether they are effective vaccine candidates against M. bovis. Key Words: Mycobacterium bovis, DNA vaccine, ESAT-6, CFP-10, PPD, Proliferation assay, BALB/c mice  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号