首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Shibata  K Ikawa    H Terada 《Biophysical journal》1995,69(2):470-477
Tetracaine (TTC) increases the permeability of phospholipid liposomal membranes to water, and this increase is reduced by the incorporation of cardiolipin into the membranes. We examined the molecular interaction of a phospholipid with the TTC cation in egg-yolk phosphatidylcholine (EyPC) liposomal membranes with incorporated bovine heart cardiolipin (BhCL) by IR spectroscopy and by determination of partitioning and the pKa of membrane-bound TTC. The IR spectra indicated that TTC shifted the stretching band of the BhCL PO2- group, a potential site of hydration in the bilayer, to a lower frequency but did not shift that of EyPC. TTC intercalated into the BhCL bilayer shifted its aromatic C-N stretching band to a lower frequency. One molecule of TTC was found to bind approximately five molecules of EyPC, and the incorporation of negatively charged BhCL into EyPC membranes increased the degree of binding of TTC to the bilayer membranes. The pKa values of TTC bound to membranes were determined as 7.7, 9.4, and 10.2 for EyPC membranes, EyPC membranes containing 50 mol % BhCL, and BhCL membranes, respectively, whereas that in an aqueous 10-mM NaCl solution was 8.5, as it was dependent on the manner of binding. The IR data together with the partitioning and the pKa data suggested differences between the actions of the TTC cation on negatively charged BhCL and on neutrally charged EyPC polar groups in the region close to the aqueous interface of the lipid bilayer.  相似文献   

2.
Reconstitution of mitochondrial calcium transport activity requires the incorporation of membrane proteins into a lipidic ambient. Calcium uptake has been measured previously using Cytochrome oxidase vesicles. The enrichment of these vesicles with cardiolipin, an acidic phospholipid that is found only in the inner mitochondrial membrane of eukaryotic cells, strongly inhibits calcium transport, in remarkable contrast with the activation effect that cardiolipin exerts upon other mitochondrial transporters and enzymes. The relation of the inactivation of calcium transport to the physical state of the bilayer was studied by following the polarization changes of 1,6-diphenyl-1,3,5-hexatriene (DPH) and by flow cytometry in the cardiolipin-enriched liposomes with incorporated mitochondrial solubilized proteins. Non-bilayer molecular arrangements in the cardiolipin-supplemented liposomes, detected by flow cytometry, may produce the fluidity changes observed by fluorescence polarization of DPH. Fluidity changes correlate with the abolition of calcium uptake, but have no effect on the establishment of a membrane potential in the vesicles required for calcium transport activity. Changes in the membrane structure and uniporter function are observed in the combined presence of cardiolipin and calcium leading to a modified lipid configuration.  相似文献   

3.
The interaction of the low molecular weight group of surfactant-associated proteins, SP 5-18, with the major phospholipids of pulmonary surfactant was studied by fluorescence measurements of liposomal permeability and fusion, morphological studies, and surface activity measurements. The ability of SP 5-18 to increase the permeability of large unilamellar lipid vesicles was enhanced by the presence of negatively charged phospholipid. The permeability of these vesicles increased as the protein concentration was raised and the pH was lowered. SP 5-18 also induced leakage from liposomes made both from a synthetic surfactant lipid mixture and from lipids separated from SP 5-18 during its purification from canine sources. When SP 5-18 was added to egg phosphatidylglycerol liposomes, the population of liposomes which became permeable leaked all encapsulated contents, while the remaining liposomes did not leak at all. The extent of leakage was higher in the presence of 3 mM calcium. SP 5-18 also induced lipid mixing between two populations of egg phosphatidylglycerol liposomes in the presence of 3 mM calcium, as monitored by resonance energy transfer between two different fluorescent lipid probes, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine and N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine. Negative-staining electron microscopy showed that the addition of SP 5-18 and 3 mM calcium produced vesicles twice the size of control egg phosphatidylglycerol liposomes. In addition, surface balance measurements revealed that the adsorption of liposomal lipids to an air/water interface was enhanced by the presence of SP 5-18, negatively charged phospholipids, and 3 mM calcium. These observations suggest a similar lipid dependence for the interactions observed in the fluorescence and adsorption experiments.  相似文献   

4.
At calcium concentrations up to about 4 mM a selective permeability increase of cardiolipin/dioleoylphosphatidylcholine (50:50, mol%) membranes for calcium and its chelator arsenazo III is observed. Under these conditions calcium does not occupy all the binding sites of cardiolipin at the membrane interface and no vesicle-vesicle interactions are found. Lowering of the cardiolipin content of the vesicles to 20 mol% extends the calcium concentration range in which a selective permeability for calcium and arsenazo III is appearing up to about 12 mM. We suggest that the observed selective permeability increase is caused by transient formation of inverted micellar structures in the membrane with cardiolipin as translocating membrane component for calcium and arsenazo III. At calcium concentrations of 4 mM and higher for 50 mol% cardiolipin-containing vesicles a general permeability increase is found together with calcium-cardiolipin binding in a 1:1 stoichiometry, vesicles aggregation and, above 8 mM of calcium, vesicle fusion. The loss of barrier function of the membrane under these conditions is correlated with vesicle aggregation and may be explained by a transition from a bilayer into a hexagonal HII organization of the phospholipids.  相似文献   

5.
6.
The interaction of the signal peptide of the Escherichia coli outer membrane protein PhoE with different phospholipid vesicles was investigated by fluorescence techniques, using a synthetic mutant signal peptide in which valine at position -8 in the hydrophobic sequence was replaced by tryptophan. First it was established that this mutation in the signal sequence of prePhoE does not affect in vivo and in vitro translocation efficiency and that the biophysical properties of the synthetic mutant signal peptide are similar to those of the wild-type signal peptide. Next, fluorescence experiments were performed which showed an increase in quantum yield and a blue shift of the emission wavelength maximum upon interaction of the signal peptide with lipid vesicles, indicating that the tryptophan moiety enters a more hydrophobic environment. These changes in intrinsic fluorescence were found to be more pronounced in the presence of phosphatidylglycerol (PG) or cardiolipin (CL) than with phosphatidylcholine (PC). In addition, quenching experiments demonstrated a shielding of the tryptophan fluorescence from quenching by the aqueous quenchers iodide and acrylamide upon interaction of the signal peptide with lipid vesicles, a shielding in the case of acrylamide that was more pronounced in the presence of negatively charged lipids. Finally it was found that acyl chain brominated lipids incorporated into phospholipid bilayers were able to quench the tryptophan fluorescence of the signal peptide, with the quenching efficiency in CL vesicles being much higher than in PC vesicles. The results clearly demonstrate that the PhoE signal peptide interacts strongly with different lipid vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The precise molecular mechanisms by which cells transduce a mechanical stimulus into an intracellular biochemical response have not yet been established. Here, we show for the first time that the fluorescence emission of an environment-sensitive membrane probe Laurdan is modulated by mechanical strain of the lipid bilayer membrane. We have measured fluorescence emission of Laurdan in phospholipid vesicles of 30, 50, and 100 nm diameter to show that osmotically induced membrane tension leads to an increase in polarity (hydration depth) of the phospholipid bilayer interior. Our data indicate that the general polarization of Laurdan emission is linearly dependent on membrane tension. We also show that higher membrane curvature leads to higher hydration levels. We anticipate that the proposed method will facilitate future studies of mechanically induced changes in physical properties of lipid bilayer environment both in vitro and in vivo.  相似文献   

8.
The influence of a transmembrane pH gradient on the Ca(2+)-induced fusion of phospholipid vesicles, containing free fatty acids, has been investigated. Large unilamellar vesicles composed of an equimolar mixture of cardiolipin, dioleoylphosphatidylcholine, and cholesterol, containing 20 mol % oleic acid, were employed. Fusion was measured using a kinetic assay for lipid mixing, based on fluorescence resonance energy transfer. At pH 7.5, but not at pH 6.0, in the absence of a pH gradient, oleic acid stimulates the fusion of the vesicles by shifting the Ca2+ threshold concentration required for aggregation and fusion of the vesicles from about 13 mM to 10 mM. In the presence of a pH gradient (at an external pH of 7.5 and a vesicle interior pH of 10.5), the vesicles exhibit fusion characteristics similar to vesicles that do not contain oleic acid at all, consistent with an effective sequestration of the fatty acid to the inner monolayer of the vesicle bilayer induced by the imposed pH gradient. The kinetics of the fusion process upon simultaneous generation of the pH gradient across the vesicle bilayer and initiation of the fusion reaction show that the inward movement of oleic acid in response to the pH gradient is extremely fast, occurring well within 1 s. Conversely, dissipation of an imposed pH gradient, by addition of a proton ionophore during the course of the fusion process, results in a rapid enhancement of the rate of fusion due to reequilibration of the oleic acid between the two bilayers leaflets.  相似文献   

9.
The morphology of the structures formed after hydration of lipid films of cholesteryl hemisuccinate/dipalmitoylphosphatidylcholine (CHEMS/DPPC) was investigated in low ionic strength solutions. The importance of addition of a charge inducing agent/geometrical structure such as CHEMS for the formation of stable vesicle dispersions upon hydration was demonstrated. The encapsulated volume measured for CHEMS/DPPC ratios below 1:50 was low. For a ratio of CHEMS/DPPC of 1:30 EM micrographs showed mainly small unilamellar vesicles, with particle sizes between 0.07 and 0.3 microns, together with a small number of much larger vesicles. For ratios of CHEMS/DPPC above 0.1 only unilamellar vesicles and no bilayer stacks were found. The results confirm the hypothesis by Hauser (Biochim. Biophys. Acta 772 (1984) 37-50), that the structures formed upon hydration of charged phospholipid films are unilamellar vesicles, while for neutral phospholipid films upon hydration bilayer stacks and multilamellar vesicles are formed. The effect of CHEMS on the liposome bilayer structure can be mainly ascribed to its charge inducing properties and presumably to a minor extent to its molecular geometry, or to a combination of both.  相似文献   

10.
In the presence of cardiolipin-containing small unilamellar vesicles, the antitumor compound adriamycin loses its ability to catalyse the flow of electrons from NADH to molecular oxygen through NADH dehydrogenase. The data strongly suggest that in the presence of cardiolipin the dihydroanthraquinone moiety is embedded in the phospholipid bilayer and thus inaccessible to the enzyme.  相似文献   

11.
Three possible mechanisms by which different levels of thyroid hormones in rats might cause the observed sevenfold change in the apparent proton permeability of the inner membrane of isolated liver mitochondria were investigated. (a) Cytochrome c oxidase was isolated from the livers of hypothyroid, euthyroid and hyperthyroid rats and incorporated into liposomes made with soya phospholipids. There was no difference between the proton current/voltage curves of the three types of vesicles. The hormonal effects, therefore, were not an inherent property of the enzymes, and were not due to different coupling of electron flow through the enzyme to proton transport. (b) The surface area of the mitochondrial inner membrane was shown by three different assays to be greater by a factor of between two and three in mitochondria from hyperthyroid animals than in mitochondria from hypothyroid animals; euthyroid controls were intermediate. This difference in surface area of the inner membrane explains less than half of the difference in apparent proton permeability. (c) The proton permeability of liposomes prepared from phospholipids extracted from mitochondrial inner membranes of hyperthyroid rats was three times greater than the proton permeability of those from hypothyroid rats; euthyroid controls were intermediate. This suggests, first, that the proton permeability of the phospholipid bilayer is an important component of the proton permeability in intact mitochondria and, second, thyroid hormone-induced changes in the bilayer are a major part of the mechanism of increased proton permeability. Such changes may be due to the known differences in fatty acid composition of mitochondrial phospholipids in different thyroid states. Thus we have identified two mechanisms by which thyroid hormone levels in rats change proton flux/mass protein in isolated liver mitochondria: a change in the area of the inner membrane/mass protein and a change in the intrinsic permeability of the phospholipid bilayer.  相似文献   

12.
Band 3 protein was reconstituted with lipid vesicles consisting of 94:6 (molar ratio) egg phosphatidylcholine-bovine heart phosphatidylserine in a 2500:1 phospholipid:protein molar ratio by means of a Triton X-100/beads method. The SO2-4 permeability of the resulting vesicles was measured using an influx assay procedure in which the vesicles were sampled and subsequently eluted over Sephadex columns at appropriate time intervals. The accuracy of the assay was greatly increased by using an internal standard in order to correct for vesicle recovery. In agreement with previous work, it could be demonstrated that incorporation of band 3 in the vesicles caused an increase in SO2-4 permeability, which could be (partially) inhibited by high concentrations of DIDS or a competitive anion such as thiocyanate. However, the magnitude of the increased SO2-4 permeability was highly variable, even when vesicles were reconstituted using band 3 isolated from one batch of ghosts. In addition, the SO2-4 influx curves showed complex kinetics. These results are related to the existence of vesicle heterogeneity with respect to protein content and vesicle size as revealed by stractan density gradient centrifugation and freeze-fracture electron microscopy. Band 3 incorporation also increased the L-glucose permeability of the vesicles which could also be inhibited by DIDS. Glycophorin, which has no known transport function, reconstituted with lipid vesicles consisting of 94:6 (molar ratio) egg phosphatidylcholine-bovine heart phosphatidylserine in a 400:1 phospholipid:protein molar ration increased the bilayer permeability towards SO2-4 as well as towards L-glucose. Surprisingly, the SO2-4 permeability in the vesicles could also be inhibited by DIDS and thiocyanate. It is concluded that the use of DIDS and a competitive anion, thiocyanate, in order to prove that band 3 is functionally reconstituted, is highly questionable. The increased SO2-4 and L-glucose permeability of band 3-lipid as well as glycophorin-lipid vesicles and the inhibitory action of DIDS are discussed in the light of the presence of defects at the lipid/protein interface and protein aggregation, which may induce the formation of pores. Since the band 3-lipid vesicles are more permeable for SO2-4 than for L-glucose, in contrast to the glycophorin-containing vesicles, it is suggested that some anion specificity of the increased bilayer permeability in the band 3-lipid vesicles is still preserved.  相似文献   

13.
A new method for measuring the rates of proton transfer through bilayer phospholipid membranes using pH-sensitive nitroxyl radicals is suggested. The pH-sensitive alkylating radical was covalently bound to glutathione. This modified glutathione is pH sensitive at pH 1.5-4.5 and does not penetrate across phospholipid membranes. Using ESR this probe was applied to register the kinetics of pH variations inside large unilamellar phospholipid vesicles after creation of a transmembrane proton gradient. In the acidic region (pH approximately 3) the main mechanism of transmembrane proton transfer is that via transport of a proton in the form of an undissociated acid. The membrane permeability coefficients have been determined for a series of acids (HCl, HClO4, HNO3, upper estimate for H2SO4). Taking into account that imidazoline and imidazolidine nitroxyl radicals can be used as pH probes in a wide range of pH, the present method can be developed for measuring the rates of transmembrane proton transfer in neutral and alkaline media.  相似文献   

14.
Changes in the mobility of phospholipid molecules in liposomes membranes under adsorption ferricytochrome c on its surface were studied by means of NMR and EPR spectroscopy. It is found that the interaction of cytochrome molecules with vesicles causes the broadening of 1H-NMR signals of hydrophobic as well as polar groups in cardiolipin and phosphatidylcholine in the presence of lauric or phosphatidic acid. This broadening of 1H-NMR signals in hydrophobic groups may be caused by decrease in the rate of lateral diffusion of phospholipid molecules. The changes in the correlation time of hydrophobic spin-proub in liposomes containing phosphatydiloholine and cardiolipin with the increase of ferricytochrome c concentration were also observed. These changes suggest that the formation of protein-phospholipid clusters results in the impair of the regular structure of phospholipid bilayer.  相似文献   

15.
A dioleoylphosphatidylcholine unilamellar vesicle model system was used to determine proton permeability. The fluorescence of the pH reporter group, pyranine, trapped within vesicles with a difference in pH across the bilayer, was digitized and analyzed with numerical integration. When H+ flux was initiated by the acidification of the external buffer (acid jump), the apparent H+ permeability was found to be a linear function of the reciprocal of the internal H+ concentration with the slope inversely proportional to the initial size of the H+ gradient. When flux was initiated by the alkalinization of the external buffer (base jump), the apparent permeability coefficient was constant for each external H+ concentration. However, the value of the apparent permeability was linearly dependent on the reciprocal of the external H+. The possibility that carbonates (carbon dioxide, carbonic acid, bicarbonate and carbonate) could be acting as proton carriers was tested by adding millimolar concentrations of bicarbonate to solutions greatly reduced in carbonates. The slopes of the graphs of apparent permeability coefficient vs. reciprocal H+ were linear functions of added bicarbonate concentration for both acid and base jump conditions. These observations were interpreted in terms of a model suggesting that carbonic acid or carbon dioxide together with bicarbonate was an efficient proton carrier across phospholipid bilayers.  相似文献   

16.
Optical response of the indicator chlortetracycline to membrane potential   总被引:1,自引:0,他引:1  
S Tang  T Beeler 《Cell calcium》1990,11(6):425-429
Chlortetracycline is a fluorescent, Ca2+ indicator commonly used to monitor the internal Ca2+ concentration of membrane vesicles and organelles. We have found that the intensity of chlortetracycline fluorescence in the presence of Ca2(+)-loaded liposomes is dependent on the membrane potential of the vesicles as well as the intravesicular Ca2+ concentration. The fluorescence of chlortetracycline was lower when an inside-negative membrane potential was placed across the liposome membrane. Since chlortetracycline diffuses across the membrane in the zwitterionic form, the distribution of chlortetracycline across the membrane should not be strongly dependent on the membrane potential. However, because the proton permeability of phospholipid vesicles is relatively high, the intravesicular proton concentration is dependent on the membrane potential. The binding of Ca2+ to chlortetracycline is dependent on pH in the range of pH 6 to pH 8. Therefore, changes in the intravesicular pH as a result of a change in the membrane potential causes relatively large changes in the chlortetracycline fluorescence signal even when there isn't a change in the Ca2+ concentration.  相似文献   

17.
The incorporation of rifampicin into multilayer phospholipid vesicles depending on the concentration of antibiotic and phospholipid content was studied. The extent of incorporation of rifampicin into monolayer vesicles (liposomes), obtained by the homogenization of multilamellar vesicles, was determined by the method of gel filtration. It was found that rifampicin better penetrates and is retained in membranes consisting of a mixture of phosphatidylcholine and cardiolipin, the maximum incorporation of rifampicin into liposomes being 17%. It was shown by 31P NMR spectroscopy that, during the interaction of rifampicin with the phospholipid membrane, the bilayer packing of phospholipids is destroyed.  相似文献   

18.
Accurate real-time measurements of proton concentration gradients are pivotal to mechanistic studies of proton translocation by membrane-bound enzymes. Here we report a detailed characterization of the pH-sensitive fluorescent nanoprobe Glu3, which is well suited for pH measurements in microcompartmentalized biological systems. The probe is a polyglutamic porphyrin dendrimer in which multiple carboxylate termini ensure its high water solubility and prevent its diffusion across phospholipid membranes. The probe’s pK is in the physiological pH range, and its protonation can be followed ratiometrically by absorbance or fluorescence in the ultraviolet-visible spectral region. The usefulness of the probe was enhanced by using a semiautomatic titration system coupled to a charge-coupled device (CCD) spectrometer, enabling fast and accurate titrations and full spectral coverage of the system at millisecond time resolution. The probe’s pK was measured in bulk solutions as well as inside large unilamellar vesicles in the presence of physiologically relevant ions. Glu3 was found to be completely membrane impermeable, and its distinct spectroscopic features permit pH measurements inside closed membrane vesicles, enabling quantitative mechanistic studies of membrane-spanning proteins. Performance of the probe was demonstrated by monitoring the rate of proton leakage through the phospholipid bilayer in large vesicles with and without the uncoupler gramicidin present. Overall, as a probe for biological proton translocation measurements, Glu3 was found to be superior to the commercially available pH indicators.  相似文献   

19.
The fluorescence lifetimes of a number of membrane probes based on the 1,6-diphenylhexatriene (DPH) chromophore have been measured in small unilamellar phospholipid vesicles and found to be multiphasic. These probes were quenched by sodium iodide with different efficiencies in vesicles and this has been attributed to the depth of the particular probe in the bilayer. The distribution of the probe between the outer and inner monolayer has been determined for those probes with fixed positions in the bilayer. The iodide ion permeability of the bilayer was found to be immeasurably small over a 3 h period.  相似文献   

20.
Recently the pH gradient evoked by a K+ diffusion potential was shown to translocate a synthetic monobasic amphipathic hexapeptide across the bilayer of lipid vesicles (De Kroon, A.I.P.M., Vogt, B., Van 't Hof, R., De Kruijff, B. and De Gier, J. (1991) Biophys. J. 60, in press). Here this observation is extended by studying the effect of a membrane potential on a set of bioactive peptides. The panel of peptides comprises the toxin mastoparan X, a tryptophan-containing analogue of the presequence of the mitochondrial protein cytochrome oxidase subunit IV (preCoxIV(1-25)W18), and the regulatory peptides ACTH(1-24), alpha-MSH, ACTH(1-10), dynorphin A, bombesin, and LHRH. The interaction of these peptides with phospholipid vesicles has been measured using the intrinsic tryptophan residue as fluorescent probe. In the absence of a K+ diffusion potential only mastoparan X and the presequence show considerable binding to vesicles consisting of phosphatidylcholine (PC). In contrast, under these conditions all peptides display affinity for vesicles consisting of the acidic phospholipid cardiolipin (CL), the extent of which depends on the net positive charge of the peptide. Application of a K+ diffusion potential to large unilamellar vesicles (LUV) consisting of PC results in a time dependent tryptophan fluorescence increase for mastoparan X, which is accelerated upon incorporating increasing amounts of CL into the LUV. A similar fluorescence increase in response to a K+ diffusion potential was observed for the above model peptide. Yet the mechanism resulting in the fluorescence increase of mastoparan X is completely different from that of the hexapeptide. Binding experiments indicate that a membrane potential-induced enhanced binding of the peptide to the outer surface of the vesicles contributes to the fluorescence increase. PreCoxIV(1-25)W18, dynorphin A, and ACTH(1-24) show fluorescence responses upon applying a membrane potential that are consistent with that of mastoparan X, whereas the other peptides tested do not respond up to a LUV CL content of 50%. The results tentatively suggest that the membrane potential only affects a peptide when it has the ability to adopt a stable membrane bound conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号