首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Kenya is endemic for cholera with different waves of outbreaks having been documented since 1971. In recent years, new variants of Vibrio cholerae O1 have emerged and have replaced most of the traditional El Tor biotype globally. These strains also appear to have increased virulence, and it is important to describe and document their phenotypic and genotypic traits. This study characterized 146 V. cholerae O1 isolates from cholera outbreaks that occurred in Kenya between 1975 and 2017. Our study reports that the 1975–1984 strains had typical classical or El Tor biotype characters. New variants of V. cholerae O1 having traits of both classical and El Tor biotypes were observed from 2007 with all strains isolated between 2015 and 2017 being sensitive to polymyxin B and carrying both classical and El Tor type ctxB. All strains were resistant to Phage IV and harbored rstR, rtxC, hlyA, rtxA and tcpA genes specific for El Tor biotype indicating that the strains had an El Tor backbone. Pulsed field gel electrophoresis (PFGE) genotyping differentiated the isolates into 14 pulsotypes. The clustering also corresponded with the year of isolation signifying that the cholera outbreaks occurred as separate waves of different genetic fingerprints exhibiting different genotypic and phenotypic characteristics. The emergence and prevalence of V. cholerae O1 strains carrying El Tor type and classical type ctxB in Kenya are reported. These strains have replaced the typical El Tor biotype in Kenya and are potentially more virulent and easily transmitted within the population.  相似文献   

2.
3.
CTXphi is a filamentous, lysogenic bacteriophage whose genome encodes cholera toxin, the primary virulence factor produced by Vibrio cholerae. CTX prophages in O1 El Tor and O139 strains of V. cholerae are found within arrays of genetically related elements integrated at a single locus within the V. cholerae large chromosome. The prophages of O1 El Tor and O139 strains generally yield infectious CTXphi. In contrast, O1 classical strains of V. cholerae do not produce CTXphi, although they produce cholera toxin and they contain CTX prophages integrated at two sites. We have identified the second site of CTX prophage integration in O1 classical strains and characterized the classical prophage arrays genetically and functionally. The genes of classical prophages encode functional forms of all of the proteins needed for production of CTXphi. Classical CTX prophages are present either as solitary prophages or as arrays of two truncated, fused prophages. RS1, a genetic element that is closely related to CTXphi and is often interspersed with CTX prophages in El Tor strains, was not detected in classical V. cholerae. Our model for CTXphi production predicts that the CTX prophage arrangements in classical strains will not yield extrachromosomal CTX DNA and thus will not yield virions, and our experimental results confirm this prediction. Thus, failure of O1 classical strains of V. cholerae to produce CTXphi is due to overall deficiencies in the structures of the arrays of classical prophages, rather than to mutations affecting individual CTX prophage genes.  相似文献   

4.
研究丝状噬菌体CTXΦ对O1群不同霍乱弧菌的水平转移效率及菌株的噬菌体免疫能力。利用带有氯霉素抗性基因遗传标记的CTXETΦ感染颗粒对O1群的4株不同霍乱弧菌进行体外和体内转染实验,根据氯霉素抗性筛选转染子,通过Southern Blot等方法进行验证并判断CTXΦ基因组的存在形式,计算比较不同菌株的转染率,分析转染及噬菌体免疫机制。带有遗传标记的CTXETΦ对古典型霍乱弧菌1119的体内转染率高于体外;体内转染实验中,古典菌株1119的转染率远高于其它3株El Tor型霍乱弧菌;在El Tor型霍乱弧菌中,不含rstR基因的IEM101的转染率高于另外两株带有rstR基因的霍乱弧菌2~3个数量级。古典型霍乱弧菌比El Tor型菌株对CTXETΦ噬菌体颗粒更易感,TCP菌毛的表达和rstR基因介导的噬菌体免疫影响CTXΦ在霍乱弧菌中的水平转移。  相似文献   

5.
This study reports the results of a molecular analysis of the CTX prophages in classical biotype strains of Vibrio cholerae O1 of clinical origin isolated between 1970 and 1979 in India. All strains were sensitive to group IV classical phage and polymyxin B but resistant to group 5 El Tor phage. These phenotypic traits are consistent to that exhibited by the classical biotype. PCR studies reconfirmed their biotype assignment and showed the presence of intact CTX prophages and the presence of the recently described toxin linked cryptic plasmid. Restriction fragment length polymorphism of rRNA genes and pulsed-field gel electrophoresis showed clonal diversity among the strains. The most notable observation was the finding that one strain (GP13) has three CTX prophages while another (GP147) has four CTX prophages. This is the first time heterogeneity is reported in the arrangement of the CTX prophages among classical strains of V. cholerae O1.  相似文献   

6.
Variation in epitopes of the B subunit of cholera toxin (CT-B) produced by strains of El Tor and classical biotype Vibrio cholerae O1 was examined using monoclonal antibodies prepared to V. cholerae 569B CT. CT-B epitopes were markedly conserved for V. cholerae classical biotypes. In contrast, epitope variation was observed for El Tor biotypes, which produced both a classical-like CT-B and a unique CT-B lacking at least one epitope common to 569B CT-B. The missing epitope was located outside the GM1 ganglioside-binding site. From results of the study reported here, genetic divergence is exhibited in the El Tor biotype CT-B versus classical CT-B. Furthermore, at least five unique epitopes of V. cholerae 569B CT-B can be defined.  相似文献   

7.
We describe a novel filamentous phage, designated VGJ phi, isolated from strain SG25-1 of Vibrio cholerae O139, which infects all O1 (classical and El Tor) and O139 strains tested. The sequence of the 7,542 nucleotides of the phage genome reveals that VGJ phi has a distinctive region of 775 nucleotides and a conserved region with an overall genomic organization similar to that of previously characterized filamentous phages, such as CTX phi of V. cholerae and Ff phages of Escherichia coli. The conserved region carries 10 open reading frames (ORFs) coding for products homologous to previously reported peptides of other filamentous phages, and the distinctive region carries one ORF whose product is not homologous to any known peptide. VGJ phi, like other filamentous phages, uses a type IV pilus to infect V. cholerae; in this case, the pilus is the mannose-sensitive hemagglutinin. VGJ phi-infected V. cholerae overexpresses the product of one ORF of the phage (ORF112), which is similar to single-stranded DNA binding proteins of other filamentous phages. Once inside a cell, VGJ phi is able to integrate its genome into the same chromosomal attB site as CTX phi, entering into a lysogenic state. Additionally, we found an attP structure in VGJ phi, which is also conserved in several lysogenic filamentous phages from different bacterial hosts. Finally, since different filamentous phages seem to integrate into the bacterial dif locus by a general mechanism, we propose a model in which repeated integration events with different phages might have contributed to the evolution of the CTX chromosomal region in V. cholerae El Tor.  相似文献   

8.
A set of 10 monoclonal antibodies specific for vibrio species and of 5 monoclonal antibodies specific for serovar (Ogawa) was studied. These monoclonal antibodies were directed toward V. cholerae O1 antigen in agglutination reaction and on slide plates. Monoclonal antibodies agglutinating typical strains of cholera vibrios with titration range from 1: 6000 to 1: 25,000 were selected. MA were revealed to interact with cholera vibrio strains with reduced agglutinability. The set of agglutinating O monoclonal immunoglobulins was developed for laboratory identification of cholera O1 vibrios.  相似文献   

9.
Pang B  Yan M  Cui Z  Ye X  Diao B  Ren Y  Gao S  Zhang L  Kan B 《Journal of bacteriology》2007,189(13):4837-4849
Toxigenic serogroups O1 and O139 of Vibrio cholerae may cause cholera epidemics or pandemics. Nontoxigenic strains within these serogroups also exist in the environment, and also some may cause sporadic cases of disease. Herein, we investigate the genomic diversity among toxigenic and nontoxigenic O1 and O139 strains by comparative genomic microarray hybridization with the genome of El Tor strain N16961 as a base. Conservation of the toxigenic O1 El Tor and O139 strains is found as previously reported, whereas accumulation of genome changes was documented in toxigenic El Tor strains isolated within the 40 years of the seventh pandemic. High phylogenetic diversity in nontoxigenic O1 and O139 strains is observed, and most of the genes absent from nontoxigenic strains are clustered together in the N16961 genome. By comparing these toxigenic and nontoxigenic strains, we observed that the small chromosome of V. cholerae is quite conservative and stable, outside of the superintegron region. In contrast to the general stability of the genome, the superintegron demonstrates pronounced divergence among toxigenic and nontoxigenic strains. Additionally, sequence variation in virulence-related genes is found in nontoxigenic El Tor strains, and we speculate that these intermediate strains may have pathogenic potential should they acquire CTX prophage alleles and other gene clusters. This genome-wide comparison of toxigenic and nontoxigenic V. cholerae strains may promote understanding of clonal differentiation of V. cholerae and contribute to an understanding of the origins and clonal selection of epidemic strains.  相似文献   

10.
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.  相似文献   

11.
Monoclonal antibodies reacting with the B subunit of Vibrio cholerae O1 strain 569B cholera toxin (CT-B) were used to identify unique and common epitopes of V. cholerae non-O1 and Vibrio mimicus CT-B. Vibrio cholerae non-O1 strains produced CT-B showing three monoclonal antibody reaction patterns (epitypes), which corresponded with epitypes described previously for V. cholerae O1 classical biotype CT-B (CT1), El Tor biotype CT-B (CT2), and a unique V. cholerae non-O1 CT-B (CT3), which lacked an epitope located in or near the GM1 ganglioside binding site of 569B CT-B. Vibrio mimicus CT-B was immunologically indistinguishable from 569B CT-B. These and previous results define six epitopes on 569B CT-B, and a fourth epitope in or near the GM1 ganglioside binding site.  相似文献   

12.
Cholera epidemic has not been reported in Haiti for at least 100 years, although cholera has been present in Latin America since 1991. Surprisingly, the recent cholera epidemic in Haiti (October 2010) recorded more than 250,000 cases and 4000 deaths in the first 6 months and became one of the most explosive and deadly cholera outbreak in recent history. In the present study, we conducted genomic analyses of pathogenicity islands of three Haitian Vibrio cholerae strains and compared them with nine different V. cholerae O1 El Tor genomes. Although CIRS101 is evolutionarily most similar to the Haitian strains, our study also provides some important differences in the genetic organization of pathogenicity islands of Haitian strains with CIRS101. Evolutionary analysis suggests that unusual functional constraints have been imposed on the Haitian strains and we hypothesize that amino acid substitution is more deleterious in Haitian strains than in nonHaitian strains.  相似文献   

13.
Vibrio cholerae strains isolated from patient, food and environmental sources in Taiwan and reference V. cholerae strains were examined by repetitive element sequence-based PCR (rep-PCR). Specimens from broth cultures were used directly in the PCR mixture with three different primers. The PCR fingerprinting profiles of toxigenic 01 isolates were not only homogeneous with primers from enterobacterial repetitive intergenic consensus (ERIC) sequences, but also allowed the differentiation from non-toxigenic O1 and non-O1 strains. Toxigenic 01 strains were further differentiated into El Tor and classical biotypes with primers designed from ERIC-related sequences of V. cholerae. Primers from the other V. cholerae repetitive DNA sequences, VCR, separated toxigenic El Tor strains into six groups and a unique pattern was also obtained in 16 isolates from imported cases of cholera and imported seafood. The results indicated that rep-PCR can be used to identify and differentiate different toxigenic 01, non-toxigenic 01 and non-O1 V. cholerae isolates.  相似文献   

14.
The most widely used oral whole-cell-recombinant B subunit cholera vaccine contains the nontoxic cholera toxin B subunit (CTXB) and either heat- or formalin-killed Vibrio cholerae O1 strains. Vibrio cholerae O1 strains in the vaccine provide antibacterial immunity, and CTXB contributes to the vaccine's efficacy by stimulating production of anti-CTXB antibody. Various attempts have been made to increase CTXB production. In this study, the mariner-FRT transposon delivery system developed by Chiang and Mekalanos was used to place the ctxB gene under the control of a strong chromosomal promoter in a nontoxigenic V. cholerae El Tor strain, M7922. The expression level of CTXB in transposon insertion mutant clones was screened by ganglioside-dependent enzyme-linked immunosorbent assay. Among CTXB-producing V. cholerae clones that were isolated, M7922-C1 produced the highest amount of CTXB (3.17+/-1.69 microg mL(-1)). M7922-C1 harbors a single insertion of ctxB into VC0972, which encodes a putative porin protein. Although the level of CTXB expression in this strain was not exceptionally high, this study indicates the possibility of using this delivery system to construct vaccine strains that overexpress specific antigens.  相似文献   

15.
Cholera toxin secretion is dependent upon the extracellular protein secretion apparatus encoded by the eps gene locus of Vibrio cholerae . Although the eps gene locus encodes several type four prepilin-like proteins, the peptidase responsible for processing these proteins has not been identified. This report describes the identification of a prepilin peptidase from the V. cholerae genomic database by virtue of its homology with the PilD prepilin peptidase of Pseudomonas aeruginosa . Plasmid disruption or deletion of this peptidase gene in either El Tor or classical V. cholerae O1 biotype strains results in a dramatic decrease in cholera toxin secretion. In the case of the El Tor biotype mutants, surface expression of the type 4 pilus responsible for mannose-sensitive haemagglutination is abolished. The cloned V. cholerae peptidase processes either EpsI or MshA preproteins when co-expressed in E. coli . Mutation of the V. cholerae peptidase gene also results in a defect in virulence and decreased levels of OmpU. The V. cholerae peptidase gene sequence shows 80% homology with the Vibrio vulnificus VvpD type 4 prepilin peptidase required for pilus assembly and cytolysin secretion in V. vulnificus . Accordingly, the V. cholerae type 4 prepilin peptidase required for pilus assembly and cholera toxin secretion has been designated VcpD.  相似文献   

16.
Vibrio cholerae species are extracellular, waterborne, gram-negative bacteria that are overwhelmed by predators in aquatic environments. The unencapsulated serogroup V. cholerae O1 and encapsulated V. cholerae O139 cause epidemic and pandemic outbreaks of cholera. It has recently been shown that the aquatic and free-living amoeba Acanthamoeba castellanii is not a predator to V. cholerae O139; rather, V. cholerae O139 has shown an intracellular compatibility with this host. The aim of this study was to examine the ability of V. cholerae O1 classical and El Tor strains to grow and survive in A. castellanii. The interaction between A. castellanii and V. cholerae O1 strains was studied by means of amoeba cell counts and viable counts of the bacteria in the absence or presence of amoebae. The viable count of intracellularly growing bacteria was estimated by utilizing gentamicin assay. Confocal microscopy and electron microscopy were used to determine the intracellular localization of V. cholerae in A. castellanii. The results showed that V. cholerae O1 classical and El Tor strains grew and survived intracellularly in the cytoplasm of trophozoites, and that the bacteria were also found in the cysts of A. castellanii. The interaction showed a facultative intracellular behaviour of V. cholerae O1 classical and El Tor strains and a possible role of A. castellanii as an environmental host of V. cholerae species.  相似文献   

17.
Biotype-specific tcpA genes in Vibrio cholerae   总被引:4,自引:0,他引:4  
Abstract The tcpA gene, encoding the structural subunit of the toxin-coregulated pilus, has been isolated from a variety of clinical isolates of Vibrio cholerae , and the nucleotide sequence determined. Strict biotype-specific conservation within both the coding and putative regulatory regions was observed, with important differences between the El Tor and classical biotypes. V. cholerae O139 Bengal strains appear to have El Tor-type tcpA genes. Environmental O1 and non-O1 isolates have sequences that bind an E1 Tor-specific tcpA DNA probe and that are weakly and variably amplified by tcpA -specific polymerase chain reaction primers, under conditions of reduced stringency. The data presented allow the selection of primer pairs to help distinguish between clinical and environmental isolates, and to distinguish El Tor (and Bengal) biotypes from classical biotypes from classical biotypes of V. cholerae . While the role of TcpA in cholera vaccine preparations remains unclear, the data strongly suggest that TcpA-containing vaccines directed at O1 strains need include only the two forms of TcpA, and that such vaccines directed at (O139) Bengal strains should include the TcpA of El Tor biotype.  相似文献   

18.
Abstract The sequence of the ctxB gene encoding the B subunit of cholera toxin has been determined for a strain of Vibrio cholerae of the novel O139 serotype associated with recent outbreaks of severe cholera throughout South-East Asia and found to be identical to the ctxB gene in V. cholerae O1 of the E1 Tor biotype. Analyses by Southern hybridization and PCR showed that all strains of the O139 serotype V. cholerae tested carried cholera toxin genes and other gene associated with a virulence cassette DNA region at two loci identical or homologous to those identified in the Classical rather than the E1 Tor biotype of V. cholerae serotype O1 although these loci in O139 could reside on restriction fragments of variable size.  相似文献   

19.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

20.
Vibrio cholerae O139 is the first non-O1 serogroup of V. cholerae to give rise to epidemic cholera. Apparently, this new serogroup arose from an El Tor O1 strain of V cholerae, but V. cholerae O139 is distinguishable from V. cholerae El Tor O1 by virtue of its novel antigenic structure and also its characteristic pattern of resistances to the antibiotics sulfamethoxazole, trimethoprim, streptomycin, and furazolidone. We found that the first three of these antibiotic resistances are carried on an approximately 62-kb self-transmissible, chromosomally integrating genetic element which we have termed the SXT element. This novel conjugative transposon-like element could be conjugally transferred from V. cholerae O139 to V cholerae O1 and Escherichia coli strains, where it integrated into the recipient chromosomes in a site-specific manner independent of recA. To study the potential virulence properties of the SXT element as well as to improve upon the live attenuated O139 vaccine strain Bengal-2, a large internal deletion in the SXT element was crossed on to the Bengal-2 chromosome. The resulting strain, Bengal-2.SXT(s), is sensitive to sulfamethoxazole and trimethoprim and colonizes the intestines of suckling mice as well as wild-type strains do, suggesting that the SXT element does not encode a colonization factor. Derivatives of Bengal-2.SXT(s) are predicted to be safe, antibiotic-sensitive, live attenuated vaccines for cholera due to the O139 serogroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号