首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Expression of vgb, encoding Vitreoscilla hemoglobin (VHb), in Burkholderia strain YV1 was previously shown to improve cell growth and enhance 2,4-dinitrotoluene (2,4-DNT) degradation compared with control strain DNT, especially under hypoxic conditions. In the work reported here, the ratio of 2,4-DNT degraded to oxygen uptake was approximately 5-fold larger for strain YV1 than for strain DNT. The addition of purified VHb to cytosolic fractions of strain DNT increased 2,4-DNT degradation 1.5-fold, compared with 1.1-fold for control bovine Hb, but increased the 2,4-DNT degradation 2.7-fold when added to partially purified 2,4-DNT dioxygenase, compared with 1.3-fold for bovine Hb. This suggests a direct transfer of oxygen from VHb to the oxygenase. In a bioreactor at high 2,4-DNT concentration (using 100 ml oleyl alcohol containing 2 g 2,4-DNT as the second phase) with 1.5 l culture, both strains could remove 0.8 g 2,4-DNT by 120 h; and, under the same conditions in a fed-batch reactor, the degradation increased to 1 g for strain YV1 but not for strain DNT.  相似文献   

2.
A bacterial consortium capable of simultaneously degrading the fungicide, carbendazim, and the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) was obtained by enrichment of soil samples collected from paddy fields in Japan. This consortium was acclimated in a continuously fed culture with 20 M carbendazim and 2 mM 2,4-D as sole carbon sources using a glass column reactor. By denaturing gradient gel electrophoresis, we observed changes in the bacterial population following the degradation of the both pesticides. This acclimated consortium completely degraded up to 100 M carbendazim and 3 mM 2,4-D within 36 and 24 h, respectively, in batch culture, but a lag time was observed after precultivation in a rich medium. The immobilization of the consortium on a polyester support enhanced the degradation ability of this consortium compared with the use of free cells. This microbial consortium could be useful for bioremediation at sites contaminated with these pesticides.  相似文献   

3.
AIMS: To isolate micro-organisms capable of utilizing polyhexamethylene biguanide (PHMB) as a sole source of nitrogen, and to demonstrate biodegradation of the biocide. METHODS AND RESULTS: Two consortia of bacteria were successfully enriched at the expense of PHMB, using sand from PHMB-treated swimming pools as inoculum. Both consortia were shown to contain bacteria belonging to the genera Sphingomonas, Azospirillum and Mesorhizobium. It was shown that the presence of both Sphingomonas and Azospirillum spp. was required for extensive growth of the consortia. In addition, the Sphingomonads were the only isolates capable of growth in axenic cultures dosed with PHMB. Using a stable isotope (15N)-labelled PHMB, metabolism of the biocide by both consortia was demonstrated. By comparing the level of 15N atom incorporation into bacterial DNA after growth on either 15N-PHMB or 15N-labelled NH4Cl, it was possible to estimate the percentage of PHMB biodegradation. CONCLUSIONS: The microbial metabolism of nitrogen from the biguanide moiety of PHMB has been demonstrated. It was revealed that Sphingomonas and Azospirillum spp. are the principal organisms responsible for growth at the expense of PHMB. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate the microbial metabolism of PHMB.  相似文献   

4.
The antioxidant behavior of a series of new synthesized substituted thiazolyl‐thiazolidine‐2,4‐dione compounds (TZDs) was examined using chemiluminescence and electron paramagnetic resonance spin trapping techniques. 5,5‐Dimethyl‐1‐pyrroline‐N‐oxide (DMPO) was used as the spin trap. The reactivity of TZDs with superoxide anion radical (O) and hydroxyl radical (HO?) was evaluated using potassium superoxide/18‐crown‐6 ether dissolved in dimethylsulfoxide, and the Fenton‐like reaction (Fe2+ + H2O2), respectively. The results showed that TZDs efficiently inhibited light emission from the O generating system at a concentration of 0.05–1 mmol L?1 (5–94% reductions were found at 1 mmol L?1 concentration). The TZD compounds showed inhibition of HO?‐dependent DMPO–OH spin adduct formation from DMPO (the amplitude decrease ranged from 8 to 82% at 1 mmol L?1 concentration). The findings showed that examined TZDs had effective activities as radical scavengers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The focus of this microcosm study was to monitor the performances of 17 butane-utilizing microcosms during a long-term (100–250 days) aerobic cometabolic depletion of chloroform (CF). The depletion of the contaminant began after a lag-time variable between 0 and 23 days. All microcosms quickly reached a pseudo steady-state condition, in terms of biomass concentration (with an average of 9.3 × 106 CFU ml–1), chloroform depletion rate (5 mol l–1 d–1) and butane utilization rate (730 mol l–1 d–1). After about 100 days of CF depletion, a sudden 5- to 7-fold increase of the chloroform rate was observed in two microcosms, where the highest amount of contaminant had been depleted. In one of these high-performing microcosms, an experiment of chloroform depletion in the absence of butane resulted in the depletion of a surprisingly high amount of contaminant (765 molCF kgdry soil–1 in 2 months) and in a marked selection of a single bacterial strain. Bioaugmentation assays conducted with the biomass selected in this microcosm and with a pure culture of the selected strain immediately resulted in very high chloroform depletion rates. Preliminary results of a study conducted with resting cells of the selected strain indicated that it can degrade chloroform concentrations up to 119 M (14.2 mg l–1) without any sign of substrate toxicity, and that it is able to transform vinyl chloride and 1,1,2-trichloroethane.  相似文献   

6.
A phytotoxic trisubstituted 2,4-pyridione, named sapinopyridione, was isolated from the culture filtrates of Sphaeropsis sapinea, a fungal pathogen of conifers occurring world-wide. Three strains were isolated from two cypress species. Strain D-55 isolated from Cupressus sempervirens resulted high producer of sapinopyridione (12.3 mg l(-1)), whereas strain D-54 isolated from the same cypress species was low producer (1.1 mg l(-1)); strain D-50 isolated from C. macrocarpa was intermediate producer (5.4 mg l(-1)). Sapinopyridione was characterised by spectroscopic and chemical methods, as the 6-methyl-2-(2-methyl-1-oxobutyl)-1-oxa-5-azaspiro[2.5]oct-6-ene-4,8-dione. The structure was supported by the preparation of three key derivatives, whose phytotoxic and antimycotic activities were also tested on host plants and on three Seiridium species, virulent fungal agents of cypress canker disease. Some structure-activity relationships were identified for both phytoxicity and antifungal activities. These activities appear related to the presence of both pyridione and oxiran rings. Also the carbonyl group of the side chain seems to play a role into impart activity.  相似文献   

7.
The present investigation showed that active processes were involved in the uptake of 2,4-dichlorophenoxyacetate (2,4-D) by Delftia acidovorans MC1. With 2,4-D-grown cells, uptake at pH 6.8 was highly affine and showed a complex pattern-forming intermediary plateau at 20–100 μM 2,4-D. The kinetics became increasingly sigmoidal with raising of the pH to 7.5 and 8.5, and complexity disappeared. The apparent maximum was obtained at around 400 μM 2,4-D at either pH, and amounted to 15–20 nmol/min*mg protein. Higher substrate concentrations resulted in significant inhibition. With cells grown on (RS)-2-(2,4-dichlorophenoxy)propionate, 2,4-D uptake increased significantly and reached 45 nmol/min*mg, hinting at induction of a specific carrier(s). The kinetic characteristics made it apparent that several proteins contribute to 2,4-D uptake in MC1. An open reading frame was detected which has similarity to genes encoding major facilitator superfamily (MFS) transporters. Mutant strains that lacked this gene showed altered kinetics with decreased affinity to 2,4-D at pH 6.8. A mutant with complete deficiency in phenoxyalkanoate utilization showed an almost linear uptake pattern hinting at sole diffusion. Cloning of tfdK encoding a specific transporter for 2,4-D resulted in an increased uptake rate and, above all, higher affinity at slightly alkaline conditions due to hyperbolic kinetics. The presence of carbonylcyanide m-chlorophenylhydrazone led to the subsequent strong inhibition of 2,4-D uptake, suggesting proton symport as the likely active mechanism.  相似文献   

8.
Plants have evolved a variety of chemical means to deter herbivory. Several studies have documented that secondary compounds are strong deterrents to certain herbivores, while others have demonstrated that some herbivores ingest large quantities of these compounds without exhibiting deleterious effects. This inconsistent response suggests that plants have evolved compounds to deter specific herbivores. Based on a study in Kibale National Park, Uganda, we explored how two major groups of herbivores, invertebrates and colobus monkeys, respond to chemical characteristics of leaves: protein, attractive from a nutritional perspective, and alkaloids, saponins and cyanogenic glycosides, which are all plant defences, detering herbivory. The intensity that colobus monkeys fed on leaves of different tree species was determined by observations (1300 h), and invertebrate herbivory was indexed by collecting leaves from 20 species and digitizing tracings to quantifying invertebrate damage. Invertebrate damage to leaves varied among species (1.5–22.5%), but showed no relationship with saponin or protein content, or the presence or absence of alkaloids. Colobine foraging effort did not relate to the saponin and protein of leaf species, nor to the presence or absence of alkaloids. Prunus africana, the only species to test positive for cyanogenic glycosides, was fed on by colobus monkeys for 8.1% of their foraging time, but, as it occurred at low densities, it was the most preferred species. These results can be interpreted in different ways. First, it is possible that inactive compounds are retained because they increase the probability of producing new active compounds. Secondly, the indices used to evaluate compound effects may be inappropriate. For example, monkeys may only be able to tolerate a toxin to a specific threshold in a single feeding session, but our index of foraging effort was averaged over the year. Thirdly, it may be that these compounds play an active role with organisms not considered (e.g. prevent fungal attack). Finally, these compounds may serve some unknown function and selection may operate for that purpose.  相似文献   

9.
The plant microbiota can affect host fitness via the emission of microbial volatile organic compounds (mVOCs) that influence growth and development. However, evidence of these molecules and their effects in plants from arid ecosystems is limited. We screened the mVOCs produced by 40 core and representative members of the microbiome of agaves and cacti in their interaction with Arabidopsis thaliana and Nicotiana benthamiana. We used SPME‐GC‐MS to characterize the chemical diversity of mVOCs and tested the effects of selected compounds on growth and development of model and host plants. Our study revealed that approximately 90% of the bacterial strains promoted plant growth both in Athaliana and Nbenthamiana. Bacterial VOCs were mainly composed of esters, alcohols, and S‐containing compounds with 25% of them not previously characterized. Remarkably, ethyl isovalerate, isoamyl acetate, 3‐methyl‐1‐butanol, benzyl alcohol, 2‐phenylethyl alcohol, and 3‐(methylthio)‐1‐propanol, and some of their mixtures, displayed beneficial effects in Athaliana and also improved growth and development of Agave tequilana and Agave salmiana in just 60 days. Volatiles produced by bacteria isolated from agaves and cacti are promising molecules for the sustainable production of crops in arid and semi‐arid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号