首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of neuropeptide Y (NPY)-like immunoreactivity (-LI) in sympathetic perivascular nerves and the functional effects of NPY and noradrenaline (NA) on vascular tone were studied in skeletal muscle of various species. A dense network of NPY-LI was found around arteries and arterioles but not venules in the gluteus maximus muscle of man, gracilis muscle of dog, tenuissimus muscle of rabbit and quadriceps muscle of cat, rat, guinea pig and pig. The distribution of NPY-immunoreactive (-IR) nerves was closely correlated to the presence of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH)-positive fibers, two markers for noradrenergic neurons. Double-staining experiments revealed that NPY- and TH-IR as well as NPY- and DBH-IR nerve fibers around arteries and arterioles were identical. The veins and venules, however, lacked or had a very sparse innervation of NPY-, TH- and DBH-positive fibers. The NPY- and TH-IR nerves in quadriceps muscle of the guinea pig were absent after treatment with 6-hydroxydopamine. Lumbosacral sympathetic ganglia from the same species contained many NPY-positive cells which were also TH- and DBH-IR. NPY-LI was also detected by radioimmunoassay in extracts of skeletal muscle from guinea pig, rabbit, dog, pig and man as well as of lumbosacral sympathetic ganglia. The content of NPY-LI in skeletal muscle was relatively low (0.1-0.4 pmol/g), whereas lumbosacral sympathetic ganglia had a much higher content (48-88 pmol/g). NPY (10(-7) M) contracted arterioles in the tenuissimus muscle of the rabbit to a similar extent (by 65%) as NA (10(-6) M), as studied by intravital microscopy in vivo. NPY had no effect on the corresponding venules while NA caused a slight contraction of these vessels. In vitro studies of small human skeletal muscle arteries and veins revealed that NPY was more potent than NA in contracting the arteries, and the highest concentration of NPY (5 x 10(-7) M) caused a contraction of a similar magnitude as NA 10(-5) M. NA contracted veins from human skeletal muscle, while NPY had only small effects. It is suggested that NPY, together with NA, could be of importance for sympathetic control of skeletal muscle blood flow.  相似文献   

2.
Neuropeptide Y and sympathetic vascular control in man   总被引:7,自引:0,他引:7  
A parallel increase in systemic plasma levels of neuropeptide Y (NPY)-like immunoreactivity (LI) and noradrenaline (NA) was found during thoracotomy and surgery involving cardiopulmonary bypass in man. Thus, plasma levels of NPY-LI increased from 29 +/- 4 pmol/l before anaesthesia to 59 +/- 10 after thoracotomy and to 87 +/- 8 pmol/l upon cardiopulmonary bypass. The corresponding NA levels increased from 1.3 +/- 0.1 nmol/l before anaesthesia to 3.0 +/- 0.6 and 4.2 +/- 5 nmol/l after thoracotomy and cardiopulmonary bypass, respectively. A significant correlation was found between plasma levels of NPY-LI and NA during the operation but not between NPY-LI and adrenaline. The NPY-LI in human plasma was found to be similar to synthetic porcine NPY on reversed phase high performance liquid chromatography. Human submandibular arteries contained high levels of NPY-LI (24 +/- 3 pmol/g). In in vitro experiments on isolated human submandibular arteries, NPY in low concentrations (1000 pmol/l) was found to potentiate the contractile effects of NA or transmural nerve stimulation and to exert vasoconstrictor activity per se in higher concentrations. The calcium-entry antagonist nifedipine abolished both the NPY-induced contractions and the enhancement of NA-evoked contractions. NPY depressed the nerve stimulation-evoked 3H-NA release from human submandibular arteries via a prejunctional mechanism which was resistant to nifedipine. NPY contracted human mesenteric veins and renal arteries, but not mesenteric arteries. In conclusion, NPY seems to be co-released with NA upon sympathetic activation in man. Furthermore, NPY exerts both pre- and postjunctional effects on sympathetic control of human blood vessels.  相似文献   

3.
Neuropeptide Y (NPY)- and somatostatin (SS)-like immunoreactivities (LI) were investigated in tumor tissues of one ganglioneuroma (GN), 3 ganglioneuroblastomas (GNB) and one neuroblastoma (NB) by radioimmunoassay. NPY-LI was detected from all 5 tumor tissues (16.4-1247 pmol/g wet tissue). Sephadex G-50 column chromatography and reverse phase high performance liquid chromatography (HPLC) revealed that most of the NPY-LI in tumor extracts was eluted in an identical position to synthetic human NPY except one GNB (case 2). In this case, most of the NPY-LI was eluted in a higher molecular weight region than synthetic human NPY in Sephadex G-50 column chromatography and in a more hydrophobic position in HPLC. SS-LI was detected from 4 tumor extracts except one GNB (case 2) (21.3-787 pmol/g wet tissue). Sephadex G-25 column chromatography and reverse phase HPLC revealed that SS-LI in tumor extracts was eluted just after the void volume and then in the same positions as SS-28 and SS-14. These results suggest that NPY, SS-14 and SS-28 exist in tumor tissues of GN, GNB and NB, and most of the NPY-LI in one GNB was a higher molecular and more hydrophobic form of NPY-LI.  相似文献   

4.
Regional distribution of neuropeptide Y (NPY) in spinal cord, dorsal root ganglia (DRG) and peripheral nerves was quantitated in rat, cat, dog, pig, and man. Spinal cords were harvested post mortem and dissected into regions or individual segments. A further dissection into dorsal and ventral horns was carried out, and DRG were harvested in all species except rat. Tissues were extracted into boiling 0.1 M HCl, and NPY was measured by radioimmunoassay using a specific antibody and I125-labeled NPY. Highest concentrations of NPY were consistently found in the dorsal horn of the lumbo-sacral cord (200-800 ng/g). DRG concentrations, in contrast, were routinely low or undetectable. Sciatic nerve concentrations in rat and pig were considerable. High performance liquid chromatography (HPLC) confirmed that the NPY immunoreactivity measured in dorsal horns of each species coeluted with authentic NPY (1-36) as a single peak.  相似文献   

5.
The occurrence of neuropeptide Y (NPY)-like immunoreactivity (LI) in the adrenal gland of several species as well as in tumor tissue and plasma from pheochromocytoma patients was investigated. NPY-LI was present in chromaffin cells of the adrenaline type in all species investigated except in the pig, as demonstrated by a colocalization of NPY-LI and the adrenaline-synthetizing enzyme phenylethanolamine N-methyltransferase (PNMT). NPY-LI in the adrenaline cells of the cat was clearly separated from the neurotensin-LI in the noradrenaline dopamine-beta-hydroxylase-positive, PNMT-negative cells. NPY-LI seems to co-exist with enkephalin-like material in the chromaffin cells. In addition, NPY-LI was present in nerves both within the adrenal cortex and medulla. The highest levels of NPY-LI were found in mouse and cat, while only a very low amount of NPY-LI was present in the pig adrenal. Characterization of the adrenal NPY-LI by reversed-phase high-performance liquid chromatography revealed that the main peak was similar to porcine NPY. In addition, two minor peaks of NPY-LI were present. High levels of NPY-LI were found in plasma and tumors from the pheochromocytoma patients. During manipulation of the tumors upon surgical removal, there was a marked increase in plasma NPY-LI in parallel with the raise in catecholamines and in blood pressure. At least two forms of NPY-LI were present in plasma and tumor extracts from pheochromocytoma patients with the main peak corresponding to porcine NPY. Since NPY exerts vasoconstrictor effects, it may be postulated that NPY contributes to the adrenal cardiovascular response and to the hypertension seen in pheochromocytoma patients.  相似文献   

6.
Age-related changes in neuropeptide Y (NPY) regulation were studied in rat adrenal glands, brains, and blood by radioimmunoassay and biochemical characterization using reversed phase HPLC and gel filtration chromatography. NPY immunoreactivity (pmol/g tissue +/- SEM) in rat adrenal glands increased from 7 +/- 1 (6 weeks old) to 1,500 +/- 580 (69 weeks old). Biochemical characterization by HPLC showed that this increase was due to those of NPY and methionine sulfoxide NPY. In contrast, in rat brain, NPY content decreased in an age-dependent manner specifically in striatum, hippocampus, medulla oblongata, and spinal cord and the sulfoxide form was not detected. In rat blood, the circulating level of NPY was high (3-5 pmol/ml plasma +/- SEM) but did not change significantly with age or by adrenal demedullation. Only a small increase of the sulfoxide form of NPY was observed in aged rat plasma. The age-dependent changes in regulation and modification of NPY in adrenal glands and in specific brain areas may have physiological relevance in the regulation of catecholamine release from adrenal glands and some brain functions during aging.  相似文献   

7.
Summary The innervation of the major arteries and heart of the toad (Bufo marinus) was examined by use of glyoxylic acid-induced catecholamine fluorescence and peptide immunohistochemistry. All arteries possessed a moderate to dense plexus of adrenergic axons, which also showed neuropeptide Y-like immunoreactivity (NPY-LI). Some adrenergic axons in the intracardiac vagal trunks showed NPY-LI, but the varicose adrenergic axons innervating the cardiac muscle of the atria and ventricle, and the coronary blood vessels did not display NPY-LI. About half of the nerve cell bodies in the anterior sympathetic chain ganglia with dopamine--hydroxylase-LI (DBH-LI) also contained NPY-LI. The nerve cell bodies with DBH-LI alone were generally larger (median diameter 30 m) than those with both DBH-LI and NPY-LI (median diameter 20 m). Some cell bodies showing DBH-LI alone were surrounded by boutons with NPY-LI but not DBH-LI. Axons that displayed simultaneously both substance P-LI (SP-LI) and calcitonin gene-related peptide-LI (CGRP-LI) also formed a plexus around all arteries studied, being particularly dense around the mesenteric and pulmonary arteries. These axons are most likely sensory since SP-LI was reduced by capsaicin treatment, and nerve cell bodies with both SP-LI and CGRP-LI were found in dorsal root ganglia and the vagal ganglion. A dense plexus of axons showing somatostatin-LI was located around the pulmonary artery and its main intrapulmonary branches. A few nerves with vasoactive intestinal polypeptide-LI were found around the dorsal aorta and pulmonary artery. No perivascular nerves with enkephalin-LI were observed. Reversed-phase, high-pressure liquid chromatography of acid extracts of the large arteries showed that the major peaks of NPY-LI and SP-LI coeluted with porcine NPY (1–36) and synthetic SP (1–11), respectively. Thus, the location and structure of these peptides in perivascular nerves has been highly conserved during vertebrate evolution.  相似文献   

8.
Neuropeptide Y1 receptors in the rat genital tract   总被引:2,自引:0,他引:2  
Using in situ hybridization and immunohistochemistry, the expression of type 1 neuropeptide Y (NPY) receptors (Y1-Rs) has been demonstrated in the rat genital tract. In the male Y1-R mRNA and Y1-R-like immunoreactivity (LI) were found in smooth muscles of predominantly arterioles and small arteries inside testis. Fibers showing NPY-LI could not be detected within testis but only in the tunica albuginea. These Y1-Rs are suggested to mediate vasoconstriction, possibly activated by NPY released from nerves in the tunica albuginea. In the female rat Y1-R mRNA, but not Y1-R-LI was found in vascular smooth muscles of arteries in the ovary and oviduct. In the oviduct Y1-R mRNA was also detected in the non-vascular smooth muscle layer. Fibers showing NPY-LI were found around blood vessels both in the ovary and oviduct. In the female genital tract also Y1-Rs may thus be involved in regulatory mechanisms mediating, for example, vasoconstriction.  相似文献   

9.
Vascular effects of neuropeptide Y (NPY) and noradrenaline (NA) were studied in six human volunteers. Systemic infusion of human NPY for 40 min (5 pmol X kg-1 X min-1) increased arterial plasma NPY-like immunoreactivity (NPY-LI) from 12 +/- 2 to 356 +/- 30 pM. This concentration caused no systemic cardiovascular effects. The disappearance curve for NPY-LI was biphasic; the slopes of the two phases corresponding to half lives of 4.1 +/- 0.4 and 20 +/- 2 min respectively. Close i.a. infusion of human NPY in the forearm caused a slowly developing and dose dependent decrease in forearm blood flow (FBF) and increase in venous tone with maximal values of 44 +/- 6 and 235 +/- 81% of control respectively at 5 nmol X min-1. The corresponding values for NA (5 nmol X min-1) were 21 +/- 9 and 489 +/- 78% of control. A threshold concentration for a decrease in FBF was obtained at a plasma NPY-LI of 3.7 +/- 0.6 nM. The decrease in FBF caused by NPY was maintained for a much longer period compared to that of NA.  相似文献   

10.
Circulating levels of neuropeptide Y (NPY)-like immunoreactivity (-LI), adrenaline and noradrenaline (NA) were analysed in 17 patients admitted to the emergency ward due to severe hypertension; blood pressure mean 204/127 mmHg. The levels of NPY-LI and NA were significantly higher (P less than 0.001) in the hypertensives as compared to a normotensive control group. HPLC analysis revealed that the plasma contained besides NPY-LI also several NPY-LI fragments of low hydrophobicity. Following 2 to 3 weeks treatment the blood pressure had decreased to a mean of 150/89 mmHg. However, circulating levels of NPY-LI (P less than 0.001) and NA (P less than 0.01) were still significantly higher than in controls in spite of the marked reduction in blood pressure. Simultaneous measurements of adrenaline did not reveal any significant changes and these values did not differ compared with those in the normotensive subjects. The findings suggest that peripheral markers of the sympathetic system (NPY-LI and NA) in severe hypertension is not directly related to the blood pressure level.  相似文献   

11.
Choroid plexus from rat, guinea-pig, rabbit and pig was investigated by light-microscopic immunohistochemistry and by radioimmunoassay for the presence of neuropeptides. A moderately dense supply of nerve fibers containing neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), respectively, was found around blood vessels and in close relation to the secretory epithelium in both pig and rabbit, while lower densities of nerve fibers were found in rat and guinea-pig. Peptide concentrations ranged from 10-40 pmolequivalents/g (pmoleqv/g) for NPY and 0.5-6 pmoleqv/g for VIP in all four species. Peptide histidine isoleucine (PHI) immunoreactive nerve fibers were present in pig choroid plexus at a lower density than NPY and VIP but with a similar distribution. Low concentrations of substance P (0.3-3 pmoleqv/g) and calcitonin gene-related peptide (0.1-3 pmoleqv/g) were found to a varying degree in choroid plexus tissue from the different species, while immunohistochemical investigation was unable to detect any immunoreactive nerve fibers. NPY was often found to coexist with VIP and PHI in pig choroid plexus, while a lesser amount of nerve fibers showed coexistence of NPY and the noradrenaline synthetizing enzyme, dopamine-beta-hydroxylase. Surgical sympathetic denervation by excision of the superior cervical ganglion in the rabbit abolished NPY-containing nerve fibers, as revealed by immunohistochemistry, but only decreased NPY levels by one third, which may be due to different identity of the peptide being detected by the two techniques. It is concluded that NPY-containing nerve fibers have a dual origin in the choroid plexus and coexist with either noradrenaline or VIP/PHI.  相似文献   

12.
Abstract: Neuropeptide Y (NPY) gene expression is known to be modulated in the mossy fiber projection of hippocampal granule cells following seizure. We investigated NPY biosynthesis and metabolism in an attempt to characterize NPY biochemically as a neurotransmitter in the granule cell mossy fiber projection. NPY biosynthesis was compared in normal control animals and in animals that had experienced a single pentylenetetrazole-induced seizure. In situ hybridization analysis established the postseizure time course of preproNPY mRNA expression in the hippocampal formation, localizing the majority of increased preproNPY mRNA content to the hilus of the dentate gyrus. Radioimmunoassay analysis of the CA3/mossy fiber terminal subfield confirmed a subsequent increase in NPY peptide content. Biosynthesis of NPY peptide by granule cells and transport to the CA3/mossy fiber subfield was demonstrated by in vivo radiolabel infusion to the dentate gyrus/hilus followed by sequential HPLC purification of identified radiolabeled peptide from the CA3/mossy fiber terminal subfield. Additional in vivo radiolabeling studies revealed a postseizure increase in an unidentified NPY-like immunoreactive (NPY-LI) species. HPLC/radioimmunoassay analyses of CA3 subfield tissue extracts comparing normal control animals and pentylenetetrazole-treated animals confirmed the increased total NPY-LI, and demonstrated that the increased NPY-LI was comprised of a minor increase in native NPY and a major increase in the unknown NPY-LI. Data from subsequent and separate analyses incorporating immunoprecipitation with anti-C-terminal flanking peptide of NPY, further HPLC purification, and matrix-assisted laser desorption/ionization mass spectrometry support the conclusion that the unknown NPY-LI is methionine sulfoxide NPY. NPY and NPY-sulfoxide displayed differential calcium sensitivity for release from mossy fiber synaptosomes. Similar to NPY, NPY sulfoxide displayed high-affinity binding to each of the cloned Y1, Y2, Y4, and Y5 receptor subtypes. Postrelease inactivation of NPY was demonstrated in a mossy fiber synaptosomal preparation. Thus, the present study in combination with previously reported electrophysiological activity of NPY in the CA3 subfield demonstrates that NPY fulfills the classical criteria for a neurotransmitter in the hippocampal granule cell mossy fiber projection, and reveals the presence of two molecular forms of NPY that display differential mechanisms of release while maintaining similar receptor potencies.  相似文献   

13.
The immunocytochemical location of neuropeptide Y (NPY)-like immunoreactivity (LI) within the neuronal structures of the rat gastrointestinal (GI) tract was investigated with the indirect immunofluorescence method. NPY immunoreactive neurons were found throughout all regions of the GI tract with the largest number in the duodenum. NPY immunoreactive perikarya were mainly located in the submucosal ganglia. NPY labeled processes were extensively seen in the submucosal and myenteric plexuses, smooth muscles, muscularis mucosa, mucosa and surrounding blood vessels. Following 6-hydroxydopamine (6-OHDA) treatment, NPY immunoreactive nerve fibers around blood vessels disappeared completely and the reactive fibers in other regions were reduced in number. NPY immunoreactive nerve cell bodies in the ganglionic plexuses, however, were not affected by 6-OHDA treatment. Serial sections of the coeliac ganglion showed that NPY-LI was present in cell bodies which also displayed tyrosine hydroxylase (TH) immunoreactivity. Our results suggest that NPY is abundantly contained in both adrenergic and non-adrenergic neurons of the gut and may play an important role in the regulation of the GI tract.  相似文献   

14.
The occurrence, molecular characteristics and biological function of neuropeptide Y (NPY) has been studied in the female genital tract of non-pregnant rabbits. NPY immunoreactivity was demonstrated throughout the genital tract. Maximum concentrations were found in the salpinx (fallopian tube), 570 pmol/g (median) lower within the uterine body (1.5 pmol/g), cervix (2.8 pmol/g) and vagina (3.6 pmol/g). In vitro, NPY had a dose-dependent stimulatory effect on non-vascular smooth muscle (ED50 10(-9) mol/l) as studied by myometrial tension recordings. In vivo, NPY (50 pmol/min.kg) induced a dose-related, non-adrenergic and non-cholinergic decrease in myometrial blood flow. Small C-terminal (NPY31-36) or N-terminal (NPY1-16) fragments of NPY had no effect on myometrial blood flow. NPY was found to interact with the smooth muscle effect of VIP; the presence of VIP (10(-8) mol/l) counteracted the contraction elicited by NPY (10(-8) mol/l) returning the response to control value. VIP and NPY displayed a similar physiological antagonism on myometrial blood flow. There was a clear difference in the response to VIP and NPY as the effect of NPY on myometrial blood flow first appeared after a lag period of 2 minutes whereas the effect of VIP was almost instantaneous. It is concluded that NPY and VIP may interact in the local nervous control of genital functions.  相似文献   

15.
Summary To visualize the localization and potential colocalization of noradrenaline and the putative pancreatic sympathetic neurotransmitters, galanin and neuropeptide Y (NPY), immunofluorescent staining for galanin, NPY and tyrosine hydroxylase (TH) was performed on sections of canine pancreas and celiac ganglion. In the pancreas, galanin-immuno-fluorescent nerve fibers were confirmed as densely and preferentially innervating the islets, whereas numerous NPY-positive nerve fibers were found in the exocrine parenchyma, the surrounding of the blood vessels and within the islets. Double-staining for the peptides and TH indicated that most galaninpositive nerve fibers were adrenergic, most NPY-positive nerve fibers were adrenergic, and many islet nerves contained both galanin and NPY, although some galaninpositive nerve fibers appeared to lack NPY. In the celiac ganglion, virtually all cell bodies were positive for both galanin and TH; a large subpopulation of these cells were also positive for NPY. Radioimmunoassay (RIA) of galanin in extracts of dog celiac ganglion revealed a very high content (256±33 pmol/g wet weight) of galanin-like immunoreactivity (GLIR), consistent with the dense staining observed. This GLIR behaved in a similar manner to synthetic porcine galanin in the RIA. In addition, the majority of the GLIR in ganglion extracts coeluted with the synthetic peptide upon gel filtration, although a minor peak of a larger apparent molecular weight was also observed, observations consistent with the presence of a precursor peptide. These findings suggest that galanin is a sympathetic post-ganglionic neurotransmitter in the canine endocrine pancreas and that NPY might serve a similar function.  相似文献   

16.
The juxtaglomerular apparatus, a neuroendocrine unit located in the vascular pole of the glomerulus and influencing blood pressure by the secretion of renin, is known to have a rich supply of monoaminergic nerve fibres. Neuropeptide Tyrosine (NPY), a newly discovered, potent, vasoconstrictor peptide of 36 amino acids, has been found by immunocytochemistry to be present in a dense plexus of fibres around the juxtaglomerular apparatus of man, monkey, mouse, hamster, rat and guinea pig. NPY-immunoreactivity was markedly depleted after chemical sympathectomy by 6-hydroxydopamine. The concentration of NPY within the whole mouse kidney was 29.6 +/- 6.8 pmol/g and fractionation of the extracts demonstrated that the NPY-like immunoreactivity co-eluted from the column in the same position as the porcine NPY standard. The role of this peptide in renal physiology and pathology now needs urgent investigation.  相似文献   

17.
Bone marrow leukocytes from adult strain 2 guinea pigs were found to have appreciable levels of 5′adenosine monophosphate hydrolytic activity (105 nmole/h/106 cells). On the basis of substrate specificity studies, enzyme inhibition studies, and thin-layer chromatographic analysis of the reaction product, the activity is related to 5′nucleotidase (5′N). The enzyme activity was associated with the membrane-enriched particulate fraction of lysed bone marrow cells.The bone marrow cell-associated 5′N activity was consistently very high in all five strains of guinea pigs examined (77–127 nmole/h/106 cells) and the range of activity was at least 10-fold greater than that observed for bone marrow cells obtained from mice, rabbits or rats. Furthermore, the bone marrow cell-associated 5′N activity in strain 2 guinea pigs was 5-fold greater than that observed for spleen and at least 13-fold greater than that of blood, mesenteric lymph nodes or thymus obtained from the same animal.Fractionation of strain 2 guinea pig bone marrow cells on Percoll density gradients showed that as the proportion of immature granulocytes increased in the various cell fractions, so did the 5′N activity. The cell fraction that sedimented at a density of 1.071 g/ml had the highest 5′N activity and the majority of the cells (94%) were immature granulocytes. The bone marrow compared to blood and spleen had the highest number of total granulocytes and the highest percentage of immature granulocytes. We conclude that the elevated bone marrow-derived 5′N activity in guinea pigs is associated with the resident population of immature granulocytes in that tissue.  相似文献   

18.
S T Cooper  A D Attie 《Biochemistry》1992,31(49):12328-12336
Apolipoprotein R (apoR) is a 23-kDa protein found on very low-density lipoprotein (VLDL), on chylomicrons, and in the d > 1.21 g/mL fraction of pig plasma. The plasma concentration of apoR is 5.1 micrograms/mL, with 11.5% of apoR found on VLDL. In vitro, apoR can transfer from the d > 1.21 g/mL infranatant onto artificial lipid emulsions or human chylomicrons but not onto human VLDL. An apoR cDNA was isolated from a pig liver lambda gt11 expression library. DNA sequence analysis of the apoR cDNA revealed 67% identity with the 3'-terminal region of human C4b-binding protein alpha-chain cDNA (C4BP alpha). C4BP alpha is a 70-kDa glycoprotein that regulates both the coagulation and the complement cascades. In plasma, C4BP alpha exists as disulfide-linked multimers consisting of seven C4BP alpha chains and a single C4BP beta chain. Like C4BP, apoR forms high molecular weight disulfide-linked complexes in plasma. However, unlike C4BP alpha, apoR complexes do not appear to contain C4BP beta. ApoR mRNA was detected in pig liver, spleen, lung, bone marrow, and lymph node, but was absent in intestine and white blood cells. This distribution is consistent with the production of apoR in terminally differentiated macrophages but not in blood monocytes. ApoR mRNA was not detected in RNA isolated from human liver or lung. ApoR may be a lipoprotein-borne regulator of either the coagulation or the complement cascades.  相似文献   

19.
Summary The juxtaglomerular apparatus, a neuroendocrine unit located in the vascular pole of the glomerulus and influencing blood pressure by the secretion of renin, is known to have a rich supply of monoaminergic nerve fibres.Neuropeptide Tyrosine (NPY), a newly discovered, potent, vasoconstrictor peptide of 36 amino acids, has been found by immunocytochemistry to be present in a dense plexus of fibres around the juxtaglomerular apparatus of man, monkey, mouse, hamster, rat and guinea pig. NPY-immunoreactivity was markedly depleted after chemical sympathectomy by 6-hydroxydopamine. The concentration of NPY within the whole mouse kidney was 29.6±6.8 pmol/g and fractionation of the extracts demonstrated that the NPY-like immunoreactivity co-eluted from the column in the same position as the porcine NPY standard. The role of this peptide in renal physiology and pathology now needs urgent investigation.  相似文献   

20.
After acute intake of 90Sr the changes of d-9 CFUs number in mice (CBA) bone marrow, spleen and peripheral blood were investigated. The obtained results indicated similar quantitative changes in bone marrow and spleen CFUs on exposure to the 90Sr when radiation doses did not cause the decrease in life-time (1.11 kBq/g). Sarcomogeneous doses of 90Sr (29.6 kBq/g) resulted in drastic changes of hemopoietic system: spleen haematopoiesis activation and suppression of bone marrow functions. On the first day after 90Sr injection (29.6 kBq/g) the increase in number of peripheral blood CFUs (circulating pool) was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号