首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turner WL  Plaxton WC 《Planta》2003,217(1):113-121
Pyrophosphate-dependent phosphofructokinase (PFP; EC 2.7.1.90) and two isoforms of ATP-dependent phosphofructokinase (PFK I and PFK II; EC 2.7.1.11) from ripened banana ( Musa cavendishii L. cv. Cavendish) fruits were resolved via hydrophobic interaction fast protein liquid chromatography (FPLC), and further purified using anion-exchange and gel filtration FPLC. PFP was purified 1,158-fold to a final specific activity of 13.9 micromol fructose 1,6-bisphosphate produced (mg protein)(-1) x min(-1). Gel filtration FPLC and immunoblot analyses indicated that this PFP exists as a 490-kDa heterooctomer composed of equal amounts of 66- (alpha) and 60-kDa (beta) subunits. PFP displayed hyperbolic saturation kinetics for fructose 6-phosphate (Fru 6-P), PPi, fructose 1,6-bisphosphate, and Pi ( K(m) values = 32, 9.7, 25, and 410 microM, respectively) in the presence of saturating (5 microM) fructose 2,6-bisphosphate, which elicited a 24-fold enhancement of glycolytic PFP activity ( K(a)=8 nM). PFK I and PFK II were each purified about 350-fold to final specific activities of 5.5-6.0 micromol fructose 1,6-bisphosphate produced (mg protein)(-1) x min(-1). Analytical gel filtration yielded respective native molecular masses of 210 and 160 kDa for PFK I and PFK II. Several properties of PFK I and PFK II were consistent with their respective designation as plastid and cytosolic PFK isozymes. PFK I and PFK II exhibited: (i) pH optima of 8.0 and 7.3, respectively; (ii) hyperbolic saturation kinetics for ATP ( K(m)=34 and 21 microM, respectively); and (iii) sigmoidal saturation kinetics for Fru 6-P ( S0.5=540 and 90 microM, respectively). Allosteric effects of phospho enolpyruvate (PEP) and Pi on the activities of PFP, PFK I, and PFK II were characterized. Increasing concentrations of PEP or Pi progressively disrupted fructose 2,6-bisphosphate binding by PFP. PEP potently inhibited PFK I and to a lesser extent PFK II ( I50=2.3 and 900 microM, respectively), while Pi activated PFK I by reducing its sensitivity to PEP inhibition. Our results are consistent with: (i) the respiratory climacteric being regulated by fine (allosteric) control of pre-existing enzymes; and (ii) primary and secondary glycolytic flux control being exerted at the levels of PEP and Fru 6-P metabolism, respectively.  相似文献   

2.
The properties of spinach leaf sucrose-phosphate synthetase (EC 2.4.1.14) and cytosolic fructose-1,6-bisphosphatase (EC 3.1.3.11) have been studied. These two enzymes have been considered to be important in the control of sucrose synthesis. Sucrose-phosphate synthetase from leaf tissue has not been studied in detail previously and we report a technique for purifying this enzyme 50-fold by chromatography on AH-Sepharose 4B. This method frees the enzyme from contaminants which interfere with assay procedures with little or no loss of activity. The partially purified enzyme has a Km for UDP-glucose of 7.1 mm and for fructose 6-phosphate of 0.8 mm. Fructose 1,6-bisphosphate, inorganic phosphate and UDP are strong inhibitors. The inhibition patterns of these suggest that the enzyme operates either by an ordered bi-bi or a Theorell-Chance mechanism. Partially purified cytosolic fructose-1,6-bisphosphatase is not only inhibited by AMP as previously reported, but is also inhibited by fructose 6-phosphate and UDP. From our observations, we conclude that sucrose biosynthesis is indeed controlled through these two enzymes and it appears that the rate of sucrose synthesis is largely dependent upon the supply of triose phosphate and ATP from the chloroplast.  相似文献   

3.
The main phosphofructokinase of Escherichia coli (PFK I) is an extensively studied allosteric enzyme specified by the pfkA gene. A nonallosteric phosphofructokinase was reported (Fraenkel, D.G., Kotlarz, D., and Bluc, H. (1973) J. Biol. Chem. 248, 4865-4866) in strains carrying the pfkB1 mutation, a suppressor of pfkA mutants, and very low levels of this enzyme have also been detected in strains not carrying the suppressor (i.e. pfkB+). The nonallosteric protein has now been prepared pure from three strains, one carrying pfkB1 and pfkA+, one carrying pfkB1 and completely deleted for pfkA, and one carrying pfkB+ and also deleted for pfkA. It is apparently the same enzyme (PFK II) in all three strains, which shows that pfkB1 is a mutation affecting the amount of a normally minor isozyme. PFK II is a tetramer of slightly larger subunit molecular weight than PFK I (36,000 and 34,000, respectively). No immunological cross-reactivity was detected between PFK II and PFK I. Unlike PFK I, PFK II does not show cooperative interactions with fructose-6-P, inhibition by P-enolpyruvate, or activation by ADP. Also unlike PFK I, PFK II is somewhat sensitive to inhibition by fructose-1,6-P2 and can use tagatose-6-P as substrate. Both enzymes can perform the reverse reaction, fructose-6-P + ATP from fructose-1,6-P2 + ADP in vitro, but not in vivo. The normal function of PFK II is not known.  相似文献   

4.
Extracellular inulinases from Penicillium janczewskii were obtained from the filtrate of 12 day-old cultures supplemented with inulin from Vernonia herbacea. Crude filtrates and partially-purified enzyme preparations (peaks I and II) were active on inulin, sucrose and raffinose. The apparent M(r) of the enzymes from peaks I and II were 48 and 66 kDa, respectively. The apparent K(m) (mmol l-1) values of peak I were 0.43 for inulin and 18.7 for sucrose; for peak II they were 0.87 and 18.5 for inulin and sucrose, respectively. Their temperature and pH optima were 55 degrees C and 5.0, respectively. Both peaks catalysed the hydrolysis of beta-(2,1) fructans more rapidly than beta-(2,6) fructans. Free fructose was the predominant product released from inulin, indicating that these enzymes display exo-inulinase activity. In view of these characteristics, the yield and the high specific activity towards beta-(2,1) fructans, inulinases from P. janczewskii can be utilized for the preparation of fructose syrup from inulin.  相似文献   

5.
Streptococcus mutans Ingbritt (serotype c) was found to secrete basic glucosyltransferase (sucrose: 1,6-alpha-D-glucan 3-alpha and 6-alpha-glucosyltransferase). The enzyme preparation obtained by ethanol fractionation, DEAE Bio-Gel A chromatography, chromatofocusing and preparative isoelectric focusing was composed of three isozymes with slightly different isoelectric points (pI 8.1-8.4). The molecular weight was estimated to be 151000 by SDS-polyacrylamide gel electrophoresis. The specific activity of the enzyme was 9.8 IU per mg of protein and the optimum pH was 6.5. The enzyme was activated 2.4-fold by commercial dextran T10, and had Km values of 7.1 micro M for the dextran and 4.3 mM for sucrose. Glucan was de novo synthesized from sucrose by the enzyme and found to be 1,6-alpha-D-glucan with 17.7% of 1,3,6-branching structure by a gas-liquid chromatography-mass spectroscopy.  相似文献   

6.
Bacillus stearothermophilus alpha-1,4-glucosidase (BS) is highly specific for alpha-1,4-glucosidic bonds of maltose, maltooligosaccharides and alpha-glucans. Bacillus thermoglucosdasius oligo-1,6-glucosidase (BT) can specifically hydrolyse alpha-1,6 bonds of isomaltose, isomaltooligosaccharides and alpha-limit dextrin. The two enzymes have high homology in primary structure and belong to glycoside hydrolase family 13, which contain four conservative regions (I, II, III and IV). The two enzymes are suggested to be very close in structure, even though there are strict differences in their substrate specificities. Molecular determinants of substrate recognition in these two enzymes were analysed by site-directed mutagenesis. Twenty BT-based mutants and three BS-based mutants were constructed and characterized. Double substitutions in BT of Val200 -->Ala in region II and Pro258 -->Asn in region III caused an appearance of maltase activity compared with BS, and a large reduction of isomaltase activity. The values of k(0)/K(m) (s(-1). mM(-1)) of the BT-mutant for maltose and isomaltose were 69.0 and 15.4, respectively. We conclude that the Val/Ala200 and Pro/Asn258 residues in the alpha-glucosidases may be largely responsible for substrate recognition, although the regions I and IV also exert a slight influence. Additionally, BT V200A and V200A/P258N possessed high hydrolase activity towards sucrose.  相似文献   

7.
Li SC  Han JW  Chen KC  Chen CS 《Phytochemistry》2001,57(3):349-359
Five isoforms of beta-galactosidase (EC 3.2.1.23), designated as beta-galactosidases I-V, were isolated from five-day-old mung bean (Vigna radiata) seedlings. Beta-galactosidases II and III were purified to electrophoretic homogeneity by a procedure involving acid precipitation, ammonium sulfate fractionation, chromatography on diethylaminoethyl-cellulose (DEAE-Cellulose) and con A-Sepharose. and chromatofocusing. Beta-galactosidases I, II and III have the same molecular mass of 87 kDa. comprising two nonidentical subunits with molecular masses of 38 and 48 kDa, while beta-galactosidases IV and V have molecular masses of 45 and 73 kDa, respectively. All the enzymes were active against p-nitrophenyl-beta-D-galactoside, and to a lesser extent, p-nitrophenyl-alpha-L-arabinoside and p-nitrophenyl-beta-D-fucoside. The enzymes were inhibited by D-galactono-1,4-lactone, D-galactose, Hg2+, Ag+ and sodium dodecyl sulfate (SDS). Beta-galactosidases I, II and III were shown to be competitively inhibited by either D-galactono-1, 4-lactone or D-galactose. Isoforms I, II and III have a common optimal pH of 3.6, while isoforms IV and V have pH optima at 3.8 and 4.0, respectively. Isoelectric points of isoforms I, II and III were 7.7, 7.5 and 7.3, respectively. Double immunodiffusion analysis indicated that beta-galactosidases I, II, III and V are immunologically similar to each other, while beta-galactosidase IV shares partially identical antigenic determinants with the other four isoforms. The purified beta-galactosidases II and III were capable of releasing D-galactose residue from the hemicellulose fraction isolated from mung bean seeds.  相似文献   

8.
Two arylamidases (I and II) were purified from human erythrocytes by a procedure that comprised removal of haemoglobin from disrupted cells with CM-Sephadex D-50, followed by treatment of the haemoglobin-free preparation subsequently with DEAE-cellulose, gel-permeation chromatography on Sephadex G-200, gradient solubilization on Celite, isoelectric focusing in a pH gradient from 4 to 6, gel-permeation chromatography on Sephadex G-100 (superfine), and finally affinity chromatography on Sepharose 4B covalently coupled to L-arginine. In preparative-scale purifications, enzymes I and II were separated at the second gel-permeation chromatography. Enzyme II was obtained as a homogeneous protein, as shown by several criteria. Enzyme I hydrolysed, with decreasing rates, the L-amino acid 2-naphtylamides of lysine, arginine, alanine, methionine, phenylalanine and leucine, and the reactions were slightly inhibited by 0.2 M-NaCl. Enzyme II hydrolysed most rapidly the corresponding derivatives of arginine, leucine, valine, methionine, proline and alanine, in that order, and the hydrolyses were strongly dependent on Cl-. The hydrolysis of these substrates proceeded rapidly at physiological Cl- concentration (0.15 M). The molecular weights (by gel filtration) of enzymes I and II were 85 000 and 52 500 respectively. The pH optimum was approx. 7.2 for both enzymes. The isoelectric point of enzyme II was approx. 4.8. Enzyme I was activated by Co2+, which did not affect enzyme II to any noticeable extent. The kinetics of reactions catalysed by enzyme I were characterized by strong substrate inhibition, but enzyme II was not inhibited by high substrate concentrations. The Cl- activated enzyme II also showed endopeptidase activity in hydrolysing bradykinin.  相似文献   

9.
Two fish aminopeptidases designated as aminopeptidases I and II were purified by DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and isoelectric focusing. The final preparations of enzymes I and II were judged nearly homogenous by polyacrylamide gel I, electrophoresis. The molecular weights of enzymes I and II were determined by gel filtration to be 370,000 and 320,000, respectively. The isoelectric points were 4.1 (I) and 4.8 (II), Both enzymes were inhibited by EDTA and activated by Co++. Bestatin could inhibit enzyme I but not enzyme II. Enzymes I and II rapidly hydrolyzed not only synthetic substrates containing alanine or leucine but also di-, tri-, and tetra-alanine. Judged from all of these properties, sardine aminopeptidases resemble human alanine aminopeptidase. Enzyme I retained more than 70% of its original activity in 15% NaCl, suggesting the enzyme participates in hydrolyzing fish proteins and peptides during fish sauce production.  相似文献   

10.
DNA-dependent RNA polymerases were solubilized from nuclei of cauliflower inflorescences and purified by agarose A-1.5m, DEAE-cellulose, DEAE-Sephadex, and phosphocellulose chromatography and sucrose density gradient centrifugation. RNA polymerases I + III were separated from II by DEAE-cellulose chromatography. Subsequent chromatography on DEAE-Sephadex resolved RNA polymerase I from III. RNA polymerases I and II were further purified to high specific activity by phosphocellulose chromatography and sucrose density gradient centrifugation. RNA polymerase I was refractory to α-amanitin at 2 mg/ml. RNA polymerase II was 50% inhibited at 0.05 μg/ml, and RNA polymerase III was 50% inhibited at 1 to 2 mg/ml of α-amanitin. The enzymes were characterized with respect to divalent cation optima, ionic strength optima, and abilities to transcribe cauliflower, synthetic, and cauliflower mosaic virus DNA templates.  相似文献   

11.
1. Two chymotrypsins, called chymotrypsin I and II, were purified from the pyloric caeca of rainbow trout, by (NH4)2SO4 fractionation, hydrophobic interaction chromatography (phenyl-Sepharose) and ion-exchange chromatography (DEAE-Sepharose). 2. The approximate molecular weights of chymotrypsin I and II were 28,200 (+/- 1200) and 28,800 (+/- 900), respectively, as determined by SDS-PAGE and their isoelectric points were about 5. 3. The pH optima of the enzymes were centered around nine, when assayed for succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (Suc-AAPF-NA) as substrate and both enzymes were unstable at pH values below 5. 4. The amidase activity of both enzymes increased with temperature up to about 55 degrees C. Chymotrypsin I was found to be more heat stable than chymotrypsin II, an effect most likely explained by stronger calcium binding of the former. 5. The trout chymotrypsins were significantly more active than bovine alpha-chymotrypsin when assayed against Suc-AAPF-NA at 25 degrees C and casein at low temperatures (10-20 degrees C), indicating an adaptation of the activities of the trout chymotrypsins to the habitation temperatures of the fish.  相似文献   

12.
Two endo-type cellulases, tentatively called carboxymethyl cellulases (CMCases) I and II, were purified by gel filtration, ion-exchange chromatography, affinity chromatography, and chromato-focusing from a culture supernatant of Penicillium purpurogenum. Their homogeneity was verified by analytical polyacrylamide gel electrophoresis. The molecular weights of CMCases I and II, estimated by gel filtration, were 72,000 and 50,000, respectively. CMCases I and II contained about 12% and 8% carbohydrate, and had isoelectric points of 4.3 and 3.9, respectively. CMCase I produced cellobiose, glucose, and a trace amount of cellotriose from H3PO4-swollen cellulose and Avicel (microcrystalline cellulose), while CMCase II produced cellobiose and cellotriose with a small amount of glucose and cellotetraose. The products from reduced cellopentaose by both enzymes were released predominantly in the β-configuration. CMCase II appeared to act in more random fashion than I against carboxymethyl cellulose. These results suggest that both enzymes attack insoluble cellulose randomly, although there are some differences in the mode of hydrolytic action.  相似文献   

13.
Two isozymes (AIV I and AIV II) of soluble acid invertase (EC 3.2.1.26) were purified from Japanese pear fruit through procedures including (NH(4))(2)SO(4) precipitating, DEAE-Sephacel column chromatography, Concanavalin A (ConA)-Sepharose affinity chromatography, hydroxyapatite column chromatography and Mono Q HR 5/5 column chromatography. The specific activities of purified AIV I and AIV II were 2670 and 2340 (nkat/mg protein), respectively. AIV I was a monomeric enzyme of 80 kDa, while AIV II may be also a monomeric enzyme, which is easy to be cleaved to 52 kDa and 34 kDa polypeptide during preparation by SDS-PAGE. The Km values for sucrose of AIV I and AIV II were 3.33 and 4.58 mM, respectively, and optimum pH of both enzyme activities was pH 4.5.  相似文献   

14.
DNA-dependent ATPases have been purified from logarithmically growing KB cells by chromatography on single-stranded DNA cellulose and phosphocellulose. Phosphocellulose resolved the DNA-dependent ATPases into three activities designated ATPase I, II and III, respectively. From gel filtration and sedimentation analysis ATPases II and III were found to be very similar, both with calculated molecular weights of 78,000. Due to the extreme lability these enzymes were not purified further. The molecular weight of ATPase I determined by gel filtration and sedimentation analysis was calculated to be 140,000. ATPase I was further purified by gradient elution on ATP-agarose, revealing two peaks of activity (IA and IB), and by sucrose gradient sedimentation. Analysis of the fractions from the sucrose gradient by sodium dodecylsulphate gel electrophoresis revealed only one broad polypeptide band co-sedimenting with both ATPase IA and ATPase IB. This band was composed of four closely spaced polypeptides with apparent molecular weights of 66,000, 68,000, 70,000 and 71,000. Comparison of the native molecule weight (140,000) with these results suggests that ATPase I is a dimer. ATPase IA and IB were indistinguishable in their structural and enzymatic properties and presumably represent the same enzyme. The purified enzyme has an apparent Km of 0.5 mM for ATP producing ADP + Pi. A maximum activity of 2,100 molecules of ATP hydrolyzed per enzyme molecular per minute was found. Hydrolysis of ATP requires the presence of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+ greater than Co2+). A broad pH optimum (pH 6--8) was observed. The enzyme uses ATP or dATP preferentially as a substrate, while other deoxyribonucleoside or ribonucleoside triphosphates were inactive. ATPase I prefers denatured DNA as cofactor. The activity with native DNA is 40% of that with denatured DNA.  相似文献   

15.
Two pepsinogens, the contents of which increase with developmental progress, were purified from the gastric mucosa of the adult rat by ammonium sulfate fractionation and chromatography on DEAE-cellulose and DEAE-Sepharose CL-6B columns. The purified zymogens, designated as pepsinogens I and II, were each shown to be homogeneous by polyacrylamide gel disc electrophoresis. Pepsinogen II had a greater electrophoretic mobility toward the anode at pH 8.0 than pepsinogen I. The molecular weights of both zymogens were estimated to be 38,000 by SDS-polyacrylamide gel electrophoresis. The activated enzymes, pepsins I and II, each had the same molecular weight of 32,000. The pH optima for both enzymes were found to be 2.0. The enzymes showed high stabilities at pH 8.0, while they lost their activities within 60 min at pH 10.0. The enzymes were inhibited by pepstatin and diazoacetyl-DL-norleucine methyl ester (DAN). The activities of the enzymes in hydrolyzing N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine (APDT) were about 1/8 of that of porcine pepsin. These results suggest that pepsins I and II are very similar.  相似文献   

16.
Two lytic enzymes (enzyme I and enzyme II) that lysed Micrococcus lysodeikticus were isolated from the crude extract of Polysphondylium pallidum myxamoebae grown in the presence of Klebsiella aerogenes by precipitation with protamine sulfate and by chromatography on DEAE-Sepharose CL-6B. Enzyme I was further purified by gel filtration on a Superose12 column, and enzyme II by chromatography on a MonoQ HR 5/5 column and gel filtration on a Superose12 column. Enzyme I was a basic protein, while enzyme II was acidic. The molecular weights of enzyme I and II were about 14,000 and 22,000, respectively by SDS-polyacrylamide gel electrophoresis. Optimum pHs for the activity were 5.0 for enzyme I and between 3.5 and 4.0 for enzyme II. The maximum activity of enzyme I and II was obtained at 65°C and 45°C to 55°C and at ionic strength of 0.0075 to 0.03 and 0.06, respectively. Both enzymes cleaved the glycosidic bond of β(1,4)-N-acetylmuramyl-acetylglucosamine of the cell wall peptidoglycan of Micrococcus lysodeikticus. These results indicate that the two lytic enzymes of Polysphondylium pallidum myxamoebae are N-acetylmuramidases.  相似文献   

17.
Three invertase forms (EC 3.2.1.26) were identified in soluble extracts from developing flower buds of Lilium longiflorum Thunb. cv. Nellie White. The enzymes were separable on a diethylaminoethyl (DEAE)-Sephacel column and designated invertase I. II or III according to the order of elution from Sephacel. To determine tissue specificity of these floral invertases, anthers were separated from tepal. pistil and filament tissue, and analyzed for invertase activity. Invertase I was localized primarily in anthers, with invertases II and III being present in much smaller amounts (less than 5% of the invertase I activity). Much higher levels of invertases II and III were found in the nonanther organs of the flower, where essentially no invertase 1 was detectable. Further purification of each form (using gel filtration. Con-A-Sepharose affinity chromatog-raphy and hydrophobic interaction chromatography on phenyl-agarose) resulted in 135- 189- and 202-fold purification of pooled fractions from DEAE-Sephacel. respectively, and established that each invertase form is a glycoprotein. Each was an acid invertase. with pH optima between 4.0 and 5.0 and an apparent molecular mass of 77 500 Da (as determined by Sephadex gel filtration). The invertases had sucrose Km values of 1.0. 6.4 and 6.6 m M . and temperature optima of 40. 50 and 45°C. respectively. A temperature stability study revealed that invertase III was the most thermostable, followed by II and I. Invertases II and III had lower affinity to raffinose and stachyose than invertase I. All three enzymes were completely inhibited by Hg2+ or Ag+ ions at 1.7 m M . At this concentration. Cu2- showed differential partial inhibition . Although fructan was shown to be present in both anther and nonanther tissues of Lilium flower buds, these invertases showed no sucrose:sucrose fructosyltransferase (EC 2.4.1.99) activity.  相似文献   

18.
Four major dextransucrase (EC 2.4.1.5) preparations from Leuconostoc mesenteroides were studied in relation to their reaction products. The extracellular enzyme II, a highly aggregated form of enzyme I, synthesized the largest amount of dextran per 1 unit of enzyme. Moreover, this dextran emerged at the void volume by Sepharose 6B chromatography. Dextran produced by the enzyme I was composed almost exclusively of water-soluble form having a molecular weight (MW) smaller than that of the product with enzyme II. Although soluble dextran produced by the intracellular enzyme (enzyme III or IV) had a low MW, ratio of insoluble dextran to total dextran was higher than that of the products with extracellular enzyme. Dextran produced by the enzyme II contained a large amount of non-α-l,6-linkages whereas dextran produced by the enzyme I was rich in linear α-l,6-linked structure. The structural analyses of various dextrans showed that each enzyme seemed to be responsible for the synthesis of both α-1,6 and non-α-l,6-linkages. Difference in the amounts and structures of dextrans suggests that the extracellular enzymes may play a major role for the dextran synthesis in vivo.  相似文献   

19.
The subcellular localization of renin and immunoreactive angiotensins I and II was studied in rat adrenal cortical tissues. The identity of the immunoreactive angiotensins was confirmed as angiotensin I and angiotensin II by radioimmunoassay and high-performance liquid chromatography, respectively, with reference to standard compounds. By differential centrifugation of tissue homogenate in 0.25 M sucrose/30 mM Tris-HCl/l mM EDTA, pH 7.4, specific immunoreactive renin was found to be localized principally (60%) in the mitochondrial fraction (P2), whereas about 40% of both angiotensins I and II was contained in the soluble fraction; only 18-20% of both peptides was contained in the P2 fraction. On Percoll density gradient centrifugation of P2, renin was fractionated mostly in a denser band whereas angiotensins I and II were contained in a lighter density area closely corresponding to mitochondrial and lysosomal marker enzymes. These results suggest that renin and angiotensins in the cells of the rat adrenal gland reside in different subcellular compartments and argue against intracellular formation of angiotensins by renin in renin granules.  相似文献   

20.
We isolated four nitroreductases from Bacteroides fragilis GAI0624 and examined their physicochemical and functional properties. Two major enzyme activities were found in the adsorbed and unadsorbed fractions from DEAE-cellulose column chromatography. The adsorbed fraction was subjected to Sephadex G-200 column chromatography, and two further activities were separated. One has high nitroreductase activity (nitroreductase I), and the other has low activity and relatively high molecular weight (nitroreductase III). The nitroreductase I fraction was subjected to hydroxylapatite and chromatofocusing column chromatography, and nitroreductase I was purified about 416-fold with a yield of 6.77%. The unadsorbed fraction from DEAE-cellulose column chromatography was subjected to Sepharose 2B and Sepharose 6B column chromatography. Two enzyme activities were obtained by the Sepharose 6B column chromatography. One has high activity (nitroreductase II), and the other has low activity (nitroreductase IV). Nitroreductase II was rechromatographed by Sepharose 6B gel filtration and purified about 178-fold with a yield of 9.65%. The four enzymes (nitroreductases I, II, III, and IV) were shown to be different by several criteria. Their molecular weights, determined by gel filtration, were 52,000, 320,000, 180,000, and 680,000, respectively. The substrate specificity, the effect on mutagenicity of mutagenic nitro compounds, of nitroreductases I, III, and IV was relatively high for 1-nitropyrene, dinitropyrenes, and 4-nitroquinoline 1-oxide, respectively, but nitroreductase II had broad specificity. Nitroreductase activity required a coenzyme; nitroreductases II, III, and IV were NADPH linked, but nitroreductase I was NADH linked. All enzyme activity was enhanced by addition of flavin mononucleotide and inhibited significantly by dicumarol, p-chloromercuribenzoic acid, o-iodosobenzoic acid, sodium azide, and Cu2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号