首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A specific antiserum was raised in rabbits against D2 hybrid T antigen that had been purified from HeLa cells infected with the adenovirus/simian virus 40 hybrid, Ad2(+)D2. The specificity of this serum was compared with that of a conventional hamster antiserum against simian virus 40-induced tumors by immunoprecipitation and by a new radioimmune assay that can detect nanogram quantities of D2 hybrid T antigen.  相似文献   

2.
A quantitative, enzyme-linked immunoadsorbent assay has been developed for the simian virus 40 large T antigen. When hamster anti-simian virus 40 tumor serum was used, this method permitted specific identification of large T antigen and its analog, the D2 hybrid protein, a molecule with the same C-terminal approximately 600 amino acids as large T antigen. The sensitivity limit of this test was 0.63 ng of protein. The slopes of the regression lines of the enzyme-linked immunosorbent assay titrations performed with highly purified D2 or simian virus 40 large T antigen and with crude extracts of simian virus 40-infected monkey and transformed human cells were identical. Thus, the curve generated with a purified protein, such as D2, can serve as a quantitative standard for the measurement of large T antigen in a wide variety of extracts. Furthermore, solutions containing high salt concentrations and buffers containing up to 0.1% Nonidet P-40 did not interfere with the assay, making it applicable to the measurement of large T antigen in a variety of chromatographic fractions. The enzyme-linked immunosorbent assay was three times more sensitive, was significantly faster to perform, and was quantitatively valid over a much broader large-T-antigen concentration range than the complement fixation test. As such, it should be useful in future studies of the structure and function of this protein.  相似文献   

3.
The nucleotide sequence of the junction between the simian virus 40 early region and the adenovirus type 2 late region L4 in the hybrid virus Ad2+D2 was determined. The deduced amino acid sequence suggests that the D2-T antigen is a chimeric protein sharing 594 amino acids with the C-terminal end of the simian virus 40 T antigen and 104 amino acids with the N terminus of the adenovirus type 2 33,000-molecular-weight protein. The predicted structure of the D2-T antigen was confirmed by an immunoprecipitation analysis.  相似文献   

4.
The antigenic binding sites of two monoclonal antibodies are located in the COOH-terminal region (clone 412) and probably in an internal region (clone 7) of simian virus 40 large T antigen. A third monoclonal antibody (clone 122), which has been shown to bind nonviral T antigen, does not react with HeLa cells infected with nondefective adenovirus type 2 (Ad2)-simian virus 40 hybrid viruses Ad2+ND1, Ad2+ND2, or Ad2+ND4.  相似文献   

5.
Simian virus 40 large T antigen is a multifunctional protein that is encoded by the early region of the viral genome. We constructed fusion proteins between simian virus 40 large T antigen and beta-galactosidase by cloning HindIII fragments A and D of the virus into the HindIII sites of expression vectors pUR290, pUR291, and pUR292. Large amounts of the fusion protein were synthesized when the DNA fragment encoding part of simian virus 40 large T antigen was in frame with the lacZ gene of the expression vector. Using Western blotting and a competition radioimmunoassay, we assessed the binding of existing anti-T monoclonal and polyclonal antibodies to the two fusion proteins. Several monoclonal antibodies reacted with the protein encoded by the fragment A construction, but none reacted with the protein encoded by the fragment D construction. However, mice immunized with pure beta-galactosidase-HindIII fragment D fusion protein produced good levels of anti-T antibodies, which immunoprecipitated simian virus 40 large T antigen from lytically infected cells, enabling derivation of monoclonal antibodies to this region of large T antigen. Therefore, the fusion proteins allowed novel epitopes to be discovered on large T antigen and permitted the precise localization of epitopes recognized by existing antibodies. The same approach can also be used to produce antibodies against defined regions of any gene.  相似文献   

6.
The phosphorylation patterns of cytoplasmic and nuclear forms of simian virus 40 large T antigen encoded by simian virus 40-adenovirus 7 hybrid viruses were analyzed by two-dimensional peptide mapping. The PARA(cT) mutant which encodes a large T antigen defective for nuclear transport was used as source for cytoplasmic large T antigen. The data suggest that the large T antigen is phosphorylated in a sequential manner at a subset of sites in the cytoplasm and at additional sites in the nucleus.  相似文献   

7.
Thirty six cloned hybridomas have been isolated which produce monoclonal antibodies directed against simian virus 40 (SV40) large T tumour antigen. They have been shown to recognize at least six different epitopes along the T antigen polypeptide according to their reaction with the various truncated forms of T antigen expressed by adenovirus-SV 40 hybrid viruses. Sixteen antibodies cross-react with cells infected by the closely related human BK virus. Only two antibodies, PAb1604 and PAb1614, directed against different epitopes of the SV40 T antigen, cross-react with polyoma large T tumour antigen which has a more limited amino acid sequence homology. This cross-reaction is rarely seen with polyclonal antibodies. Monoclonal antibody PAb1620 gave nuclear immunofluorescence only with murine cells transformed by SV40 and was found to react with a complex of T-antigen and 53 000-dalton host-coded protein. All the monoclonal antibodies react with nuclear T antigen and all but four antibodies stained the surface of SV40-transformed cells. These were four of the five antibodies directed against the central third of the T antigen. Thus the monoclonal antibodies show that cell surface T antigen differs from nuclear T antigen, either in accessibility or structure.  相似文献   

8.
We describe a biochemical function of simian virus 40 small t antigen, the inhibition of simian virus 40 large T antigen-mediated viral DNA replication in an in vitro replication system. Our results suggest that in this system, small t antigen prevents protein phosphatase 2A-mediated activation of large T antigen.  相似文献   

9.
An immunoprecipitation assay was established for simian virus 40 T-antigen-bound nucleoprotein complexes by means of precipitation with sera from hamsters bearing simian virus 40-induced tumors. About 80% of simian virus 40 replicating nucleoprotein complexes in various stages of replication were immunoprecipitated. In contrast, less than 21% of mature nucleoprotein complexes were immunoprecipitated. Pulse-chase experiments showed that T antigen was lost from most of the nucleoprotein complexes concurrently with completion of DNA replication. T antigen induced by dl-940, a mutant with a deletion in the region coding for small T antigen, was also associated with most of the replicating nucleoprotein complexes. Once bound with replicating nucleoprotein complexes at the permissive temperature, thermolabile T antigen induced by tsA900 remained associated with the complexes during elongation of the replicating DNA chain at the restrictive temperature. These results suggest that simian virus 40 T antigen (probably large T antigen) associates with nucleoprotein complexes at or before initiation of DNA replication and that the majority of the T antigen dissociates from the nucleoprotein complexes simultaneously with completion of DNA replication.  相似文献   

10.
We analyzed the biological activity of an amber mutation, am404, at map position 0.27 in the T antigen gene of simian virus 40. Immunoprecipitation of extracts from am404-infected cells demonstrated the presence of an amber protein fragment (am T antigen) of the expected molecular weight (67,000). Differential immunoprecipitation with monoclonal antibody demonstrated that am T antigen was missing the carboxy-terminal antigenic determinants. The amber mutant was shown to be defective for most of the functions associated with wild-type T antigen. The mutant did not replicate autonomously, but this defect could be complemented by a helper virus (D. R. Rawlins and N. Muzyczka, J. Virol. 36:611-616, 1980). The mutant failed to transform nonpermissive rodent cells and did not relieve the host range restriction of adenovirus 2 in monkey cells. However, stimulation of host cell DNA, whose functional region domain has been mapped within that portion of the protein synthesized by the mutant, could be demonstrated in am404-infected cells. A number of unexpected observations were made. First, the am T antigen was produced in unusually large amounts in a simian virus 40-transformed monkey cell line (COS-1), but overproduction was not seen in nontransformed monkey cells regardless of whether or not a helper virus was present. This feature of the mutant was presumably the result of the inability of am T antigen to autoregulate, the level of wild-type T antigen in COS-1 cells, and the unusually short half-life of am T antigen in vivo. Pulse-chase experiments indicated that am T antigen had an intracellular half-life of approximately 10 min. In addition, although the am T antigen retained the major phosphorylation site found in simian virus 40 T antigen, it was not phosphorylated. Thus, phosphorylation of simian virus 40 T antigen is not required for the stimulation of host cell DNA synthesis. Finally, fusion of am404-infected monkey cells with Escherichia coli protoplasts containing appropriate procaryotic suppressor tRNAs showed that am404 is a suppressible nonsense mutation.  相似文献   

11.
In this paper we provide evidence that a fraction of large T antigen of simian virus 40 (SV40) interacts with cyclin A and p33cdk2 in both virus-infected and stably transformed cells. Immunoprecipitates of SV40 large T antigen from SV40-infected or SV40 large-T-antigen-transformed cells contain cyclin A, p33cdk2, and histone H1 kinase activity. Conversely, immunoprecipitates of cyclin A from these cells contain SV40 large T antigen. In this respect, SV40 large T antigen has properties similar to those of the E1A oncogene of adenoviruses and the E7 oncogene of human papillomaviruses.  相似文献   

12.
Phenotypic revertants were isolated from simian virus 40-transformed cells in order to examine the relationship between simian virus 40 T-antigen expression and G1 arrest of growth. Revertant clones with increased adherence were selected from cultures of SVT2, a simian virus 40-transformed BALB/c mouse cell line, and screened to find arrestable revertant clones which inhibited DNA synthesis when crowded. The clones selected from untreated SVT2 were unstable and showed little or no inhibition of DNA synthesis when crowded. Stable revertants were found after treatment of SVT2 with Colcemid to increase ploidy. The stable revertants all lost most transformed growth properties tested, including tumorigenicity, but only a few showed the same degree of inhibition of DNA synthesis at high cell density as BALB/3T3. All revertant clones expressed T antigen at low cell density. Three revertants showed coordinate inhibition of DNA synthesis and apparent loss of T antigen at high cell density. We suggest that changes in gene dosage rather than mutations caused the altered properties of the new revertants and that continued DNA synthesis in confluent cultures may be the transformed phenotype that requires the least simian virus 40 T antigen.  相似文献   

13.
Simian virus 40 mutant with transposed T-antigen and VP1 genes   总被引:7,自引:3,他引:4       下载免费PDF全文
  相似文献   

14.
The Ad2++hey hybrid virus population produces simian virus 40 (SV40) efficiently during lytic infection, whereas Ad2++ley does not, although both hybrids contain a complete SV40 genome. In this report, we demonstrate the synthesis of nonhydrid SV40 DNA in Ad2++HEY-infected Vero cells, but only early SV40 RNA is transcribed efficiently in Ad2++LEY-infected cells. Ad2++HEY induces SV40 U, T, and V antigens during lytic infection of African green monkey kidney cells, whereas Ad2++LEY induces only SV40 U and T antigens. These variations in the behavior of Ad2++HEY and Ad2++LEY regarding expression of SV40 functions probably reflect differences in the rate of SV40 excision from the hybrid genomes.  相似文献   

15.
16.
17.
Previous work has shown that murine embryonal carcinoma cells are refractory to infection with various viruses, including simian virus 40. Thus, large T and small t antigens, the products of the simian virus 40 early region, are not produced when the virus infects embryonal carcinoma cells, in contrast to other cell types. We show, by qualitative and quantitative analyses, that embryonal carcinoma cell hybrids, containing a simian virus 40 early region integrated into human DNA, are capable of producing viral large T antigen.  相似文献   

18.
A measure of the molecular weight of the large simian virus 40 T antigen was sought by SDS-polyacrylamide gel electrophoresis, random-coil chromatography, and sedimentation-velocity analysis in a density gradient. Large T antigen obtained from a simian virus 40-transformed human cell line either by immunoprecipitation or by standard preparatory methods migrated like a 94,000-molecular-weight (approximately 94K) polypeptide in SDS-gels but was found to have an approximate was observed with T antigen obtained from lytically infected monkey cells. In view of the strong theoretical basis for the guanidine method and the agreement with the sedimentation data, these findings suggest that the molecular weight of this protein is approximately 75 to 80K as opposed to 94 to 100K and, therefore, that considerably less than the entire early region of simian virus 40 is required to encode it. This size estimate is in keeping with earlier results which revealed a normal-size T antigen in cells infected with viable deletion mutants lacking as much as 10% of the early region.  相似文献   

19.
Hybrid viral genomes were used to investigate the influence of specific polyomavirus sequences on the transforming behavior of JC virus (JCV). One set of chimeric DNAs was made by exchanging the regulatory regions between JCV and simian virus 40 (SV40) or JCV and BK virus (BKV). A second set of constructs was produced that expressed hybrid JCV-BKV T proteins under the control of either JCV or BKV regulatory signals. Transformation of Rat 2 cells with the parental and chimeric DNAs indicated that both the JCV regulatory signals and the sequence encoding the amino terminus of T protein contributed to the restricted transforming behavior of this virus. Analysis of the viral proteins in the transformed rat cells indicated that the large T antigens of JCV and BKV were less stable than their SV40 counterpart, that small t protein was produced in JCV transformants, and that the subpopulation of T antigen that forms a stable complex with cellular p53 protein was smaller in JCV-transformed cells than in SV40- or BKV-transformed cells.  相似文献   

20.
We analyzed the subcellular distribution of nuclear transport-defective simian virus 40 Lys-128-mutant (cT-3 [R. E. Lanford and J. S. Butel, Cell 37:801-813, 1984] and d10 [D. Kalderon, W. D. Richardson, A. F. Markham, and A. E. Smith, Nature (London) 311:33-38, 1984]) large T antigens in various Lys-128-mutant-transformed rodent cells and in Lys-128-mutant d10-infected TC7 cells. Small but significant amounts of the mutant large T antigens were found in association with nuclear substructures, both in mutant-transformed and in mutant-infected cells. Experiments with TC7 cells made incompetent for cell division by 60Co irradiation supported the assumption that Lys-128-mutant large T antigen did not associate with nuclear components during mitosis but most likely was transported into the nucleus because the Lys-128 mutation was leaky for nuclear transport. Low-level simian virus 40 DNA replication and production of infectious mutant virus progeny in TC7 cells indicated that the association of Lys-128-mutant large T antigen with nuclear substructures is functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号