首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
In Drosophila, pulses of the steroid hormone ecdysone trigger larval molting and metamorphosis and coordinate aspects of embryonic development and adult reproduction. At each of these developmental stages, the ecdysone signal is thought to act through a heteromeric receptor composed of the EcR and USP nuclear receptor proteins. Mutations that inactivate all EcR protein isoforms (EcR-A, EcR-B1, and EcR-B2) are embryonic lethal, hindering analysis of EcR function during later development. Using transgenes in which a heat shock promoter drives expression of an EcR cDNA, we have employed temperature-dependent rescue of EcR null mutants to determine EcR requirements at later stages of development. Our results show that EcR is required for hatching, at each larval molt, and for the initiation of metamorphosis. In EcR mutants arrested prior to metamorphosis, expression of ecdysone-responsive genes is blocked and normal ecdysone responses of both imaginal and larval tissues are blocked at an early stage. These results show that EcR mediates ecdysone signaling at multiple developmental stages and implicate EcR in the reorganization of imaginal and larval tissues at the onset of metamorphosis.  相似文献   

6.
7.
Pulses of the steroid hormone ecdysone activate genetic regulatory hierarchies that coordinate the developmental changes associated with Drosophila metamorphosis. A high-titer ecdysone pulse at the end of larval development triggers puparium formation and induces expression of the DHR3 orphan nuclear receptor. Here we use both a heat-inducible DHR3 rescue construct and clonal analysis to define DHR3 functions during metamorphosis. Clonal analysis reveals requirements for DHR3 in the development of adult bristles, wings, and cuticle, and no apparent function in eye or leg development. DHR3 mutants rescued to the third larval instar also reveal essential functions during the onset of metamorphosis, leading to lethality during prepupal and early pupal stages. The phenotypes associated with these lethal phases are consistent with the effects of DHR3 mutations on ecdysone-regulated gene expression. Although DHR3 has been shown to be sufficient for early gene repression at puparium formation, it is not necessary for this response, indicating that other negative regulators may contribute to this pathway. In contrast, DHR3 is required for maximal expression of the midprepupal regulatory genes, EcR, E74B, and betaFTZ-1. Reductions in EcR and betaFTZ-F1 expression, in turn, lead to submaximal early gene induction in response to the prepupal ecdysone pulse and corresponding defects in adult head eversion and salivary gland cell death. These studies demonstrate that DHR3 is an essential regulator of the betaFTZ-F1 midprepupal competence factor, providing a functional link between the late larval and prepupal responses to ecdysone. Induction of DHR3 in early prepupae ensures that responses to the prepupal ecdysone pulse will be distinct from responses to the late larval pulse and thus that the animal progresses in an appropriate manner through the early stages of metamorphosis.  相似文献   

8.
The acquisition of competence is a key mechanism for refining global signals to distinct spatial and temporal responses. The molecular basis of competence, however, remains poorly understood. Here, we show that the beta FTZ-F1 orphan nuclear receptor functions as a competence factor for stage-specific responses to the steroid hormone ecdysone during Drosophila metamorphosis. beta FTZ-F1 mutants pupariate normally in response to the late larval pulse of ecdysone but display defects in stage-specific responses to the subsequent ecdysone pulse in prepupae. The ecdysone-triggered genetic hierarchy that directs these developmental responses is severely attenuated in beta FTZ-F1 mutants, although ecdysone receptor expression is unaffected. This study define beta FTZ-F1 as an essential competence factor for stage-specific responses to a steroid signal and implicates interplay among nuclear receptors as a mechanism for achieving hormonal competence.  相似文献   

9.
10.
11.
12.
13.
14.
King-Jones K  Charles JP  Lam G  Thummel CS 《Cell》2005,121(5):773-784
A critical determinant of insect body size is the time at which the larva stops feeding and initiates wandering in preparation for metamorphosis. No genes have been identified that regulate growth by contributing to this key developmental decision to terminate feeding. We show here that mutations in the DHR4 orphan nuclear receptor result in larvae that precociously leave the food to form premature prepupae, resulting in abbreviated larval development that translates directly into smaller and lighter animals. In addition, we show that DHR4 plays a central role in the genetic cascades triggered by the steroid hormone ecdysone at the onset of metamorphosis, acting as both a repressor of the early ecdysone-induced regulatory genes and an inducer of the betaFTZ-F1 midprepupal competence factor. We propose that DHR4 coordinates growth and maturation in Drosophila by mediating endocrine responses to the attainment of critical weight during larval development.  相似文献   

15.
16.
17.
18.
19.
Pulses of the steroid hormone ecdysone during late larval and prepupal development in Drosophila coordinate the activation of a large number of primary and secondary response genes, signalling the onset of metamorphosis. Molecular characterization of some of these genes has provided valuable clues to regulatory mechanisms by which the ecdysone signal is transduced and amplified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号