首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.  相似文献   

2.
Bacterial lipopolysaccharide (LPS) is a powerful activator of the innate immune system. Exposure to LPS induces an inflammatory reaction in the lung mediated primarily by human blood monocytes and alveolar macrophages, which release an array of inflammatory chemokines and cytokines including IL-8, TNF-alpha, IL-1beta, and IL-6. The signaling mechanisms utilized by LPS to stimulate the release of cytokines and chemokines are still incompletely understood. Pretreatment with the protein tyrosine kinase-specific inhibitors genistein and herbimycin A effectively blocked LPS-induced NF-kappaB activation as well as IL-8 gene expression in human peripheral blood monocytes. However, when genistein was added 2 min after the addition of LPS, no inhibition was observed. Utilizing a coimmunoprecipitation assay, we further showed that LPS-stimulated tyrosine phosphorylation of Toll-like receptor 4 (TLR4) may be involved in downstream signaling events induced by LPS. These findings provide evidence that LPS-induced NF-kappaB activation and IL-8 gene expression use a signaling pathway requiring protein tyrosine kinase and that such regulation may occur through tyrosine phosphorylation of TLR4.  相似文献   

3.
Recent data suggest that IL-15 plays an important role in the pathogenesis of rheumatoid arthritis. In the present study, we hypothesized that elevated in the joints of rheumatoid arthritis, but not osteoarthritis, patients, IL-15 may exert its proinflammatory properties via the induction of IL-17, a cytokine known to stimulate synoviocytes to release several mediators of inflammation including IL-6, IL-8, GM-CSF and PGE2. To test this hypothesis, we first measured the levels of IL-17 and IL-15 using specific ELISA and found that synovial fluids of patients with rheumatoid arthritis, but not with osteoarthritis, contain high levels of these cytokines. A strong correlation between IL-15 and IL-17 levels in synovial fluids was observed. Among tested factors, LPS and TNF-alpha failed, IL-15 and IL-2 were equipotent, and PMA + ionomycin was far more efficient in the induction of IL-17 secretion by PBMCs isolated from healthy blood donors. Interestingly, synovial fluid cells, in contrast to PBMCs isolated from patients with rheumatoid arthritis, but not osteoarthritis, respond to PMA + ionomycin with much lower, comparable to IL-15-triggered IL-17 secretion. Moreover, PMA + ionomycin-triggered IL-17 secretion is completely or partially blocked in the presence of low doses of cyclosporin A or high doses of methylprednisolone, respectively. IL-15-triggered IL-17 secretion by PBMCs was completely inhibited by these drugs. Thus, our results suggest for the first time that IL-15 may represent a physiological trigger that via cyclosporin A and steroid sensitive pathways leads to the overproduction of IL-17 in the joints of rheumatoid arthritis patients.  相似文献   

4.
The polypeptide interleukin-1 (IL-1) is a cytokine that may mediate inflammation and connective tissue damage in rheumatoid arthritis (RA). We examined cytokine production by normal blood and by rheumatoid synovial mononuclear cells with sensitive (picomolar) assays. The assays were immunolabeling and immunoblotting with rabbit anti-IL-1 beta sera, and proliferation of the murine D10 cell line to IL-1. Little or no cytokine was detected in rheumatoid joint fluid or in exudate mononuclear cells from patients with acute rheumatoid flares. The mononuclear cells could be induced to make IL-1 upon stimulation with lipopolysaccharide (LPS). The responsive cells were monocytes, since all could be double-labeled with anti-IL-1 and the monocyte-specific CD14 antibody. More than 80% of the synovial fluid monocytes made IL-1 beta after 24 hr in 2 ng/ml LPS. Other agents failed to induce IL-1 from enriched populations of monocytes including interferon gamma (IFN-gamma), poly (I/C), phorbol myristate acetate (PMA), concanavalin A (Con A), phytohemagglutinin (PHA), and anti-CD3 antibodies. Relatively high levels of dendritic cells (DC) were present in RA effusions, but these did not produce IL-1 in response to any of the above stimuli. Blood dendritic cells also did not make IL-1, whereas blood monocytes responded comparably to synovial exudate cells. The data indicate that rheumatoid exudate monocytes make very little IL-1 during acute flares of arthritis and that this cytokine is primarily a macrophage rather than a dendritic cell product.  相似文献   

5.
6.
To analyze the role of Toll-like receptors (TLR) in the pathogenesis of rheumatoid arthritis, we have assessed the effects of stimulation of cultured synovial fibroblasts by the TLR-2 ligand bacterial peptidoglycan. By using high density oligonucleotide microarray analysis we identified 74 genes that were up-regulated >2.5-fold. Fourteen CC and CXC chemokine genes were among the genes with the highest up-regulation. Quantitative real-time PCR analysis confirmed up-regulation of granulocyte chemotactic protein (GCP)-2, RANTES, monocyte chemoattractant protein (MCP)-2, IL-8, growth-related oncogene-2, and to a lesser extent, macrophage-inflammatory protein 1alpha, MCP-1, EXODUS, and CXCL-16. GCP-2, RANTES, and MCP-2 were detected in culture supernatants of synovial fibroblasts stimulated with peptidoglycan. Chemokine secretion induced by stimulation of rheumatoid arthritis synovial fibroblasts via TLR-2 was functionally relevant as demonstrated by chemotaxis assays. GCP-2 and MCP-2 expression, which have not been reported previously in rheumatoid arthritis, was demonstrated in synovial tissue sections of patients diagnosed with rheumatoid arthritis but not in those with osteoarthritis. Correspondingly, synovial fluid levels were significantly higher in patients diagnosed with rheumatoid arthritis as compared with osteoarthritis. Thus, we present evidence for an induction of chemokine secretion by activation of synovial fibroblasts via TLR-2, possibly contributing to the formation of inflammatory infiltrates characteristically found in rheumatoid arthritis joints.  相似文献   

7.
The Toll-like receptor (TLR) signaling pathway is activated in synovial fibroblast cells in patients with rheumatoid arthritis (RA). The receptor activator of nuclear factor-κB (RANK) and its ligand, RANKL, are key molecules involved in the differentiation of osteoclasts and joint destruction in RA. Hyaluronan (HA) is a major extracellular component and an important immune regulator. In this study, we show that lipopolysaccharide (LPS) stimulation significantly increases RANKL expression via a TLR-4 signaling pathway. We also demonstrate that HA suppresses LPS-induced RANKL expression, which is dependent on CD44, but not intercellular adhesion molecule-1 (ICAM-1). Our study provides evidence for HA-mediated suppression of TLR-4-dependent RANKL expression. This could present an alternative target for the treatment of destructed joint bones and cartilages in RA.  相似文献   

8.
Rheumatoid arthritis (RA) is an immune disease in which the pathological immune reaction is thought to be initiated by the presentation of an (auto) antigen or superantigen by MHC class II positive cells to CD4 T cells. These successive immunological events can be studied by the cytokines produced at the different stages. Cytokine secretion by stimulated cells in autologous diluted whole blood has allowed the study of the immune profile characteristic of rheumatoid arthritis. The pattern of RA patient whole blood cells cultured in autologous blood is characterized by hyperactivity of the mononuclear cells with high secretion of IL-1 beta, TNF-alpha and IL-6 and low production of IFN-gamma, in comparison with the normal (N) and osteoarthrosis (OA) populations. The IL-2 secretion pattern is unique, arising from production followed by consumption. This production-consumption turnover is the most elevated in the RA group. The T cells are indeed activated in rheumatoid arthritis but regulatory events suppress some of their functions. A correlation was found between the inflammatory proteins and mediators of cellular immunity and macrophagic function: IL-1 beta and the sedimentation rate; IL-6 and fibrinogen; TNF-alpha and the number of blood monocytes. The secretion of OA-stimulated whole blood cells was similar to RA for two monokines (overproduction of TNF-alpha and IL-6) and different for IL-1 beta, not different from normal in OA. Stimulated whole blood cell cytokine secretion profile from RA and OA groups, was the same as previously observed in synovial fluid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In this study, the effect of Lactobacillus plantarum lipoteichoic acid (pLTA) on LPS-induced MAPK activation, NF-kappaB activation, and the expression of TNF-alpha and IL-1R-associated kinase M (IRAK-M) was examined. The expression of the pattern recognition receptor and the survival rate of mice were also examined. pLTA pretreatment inhibited the phosphorylation of ERK, JNK, and p38 kinase. It also inhibited the degradation of IkappaBalpha and IkappaBbeta, as well as the activation of the LPS-induced TNF-alpha factor in response to subsequent LPS stimulation. These changes were accompanied by the suppression of the LPS-induced expression of TLR4, NOD1, and NOD2, and the induction of IRAK-M, with a concurrent reduction of TNF-alpha secretion. Furthermore, the overexpression of pattern recognition receptors such as TLR4, NOD1, and NOD2 and the degradation of IRAK-M by transient transfection were found to reinstate the production of TNF-alpha after LPS restimulation. In addition, the i.p. injection of pLTA suppressed fatality, and decreased the level of TNF-alpha in the blood, in LPS-induced endotoxin shock mice. In conclusion, these data extend our understanding of the pLTA tolerance mechanism, which is related to the inhibition of LPS-induced endotoxin shock, and suggest that pLTA may have promise as a new therapeutic agent for LPS-induced septic shock.  相似文献   

10.
We have looked for IL-6, a cytokine that has immunomodulating and inflammation-associated activities, in joint exudates (fluid and mononuclear cells) from patients with rheumatoid arthritis and other arthritides using both biologic and biochemical assays. IL-6 was assessed by its ability to stimulate alpha 1-antichymotrypsin secretion from the human hepatoma cell line Hep3B clone 2, an activity which is blocked by an antiserum to Escherichia coli derived IL-6, and by the growth of the IL-6-dependent murine hybridoma 7TD1 cell line. IL-6 isoforms in synovial fluid were characterized by immunoaffinity chromatography followed by Western blotting. The presence of IL-1 in synovial fluids and its production by synovial fluid mononuclear cells was monitored by Western blotting and indirect immunofluorescence with polyclonal anti-IL-1 beta antisera. In an analysis of 30 effusions from 27 rheumatoid patients with acutely inflamed joints, abundant quantities of IL-6 (greater than 2 ng/ml) were detected in 23 by the alpha 1-antichymotrypsin bioassay. Several rheumatoid synovial fluids also had elevated IL-6 levels in the 7TD1 bioassay. Seven of nine nonrheumatoid effusions also contained high levels of IL-6 (greater than 2 ng/ml). No IL-1 (less than 0.25 ng/ml) could be detected by Western blotting in 10 rheumatoid effusions even though eight of these contained high levels of IL-6. The IL-6 activity could be neutralized with a rabbit antiserum to rIL-6. Multiple IL-6 isoforms (25, 30, 45 kDa) were present in two rheumatoid and one traumatic effusion studied. Fresh mononuclear cells isolated from various synovial effusions did not appear to make IL-6 constitutively, as no IL-6 could be detected in the media of cells cultured for 12 to 18 h after isolation. Similarly, there was no constitutive production of IL-1 by these cells. However, synovial fluid mononuclear cells could be induced to secrete both IL-6 and IL-1 after stimulation with LPS. The LPS-responsive cells were monocytes and not lymphocytes or dendritic cells. These findings suggest that IL-6 is involved in inflammatory joint disease. However, the primary cells synthesizing it may be located in the synovial lining instead of the joint exudate.  相似文献   

11.
IL-10 down-regulates the APC function of many dendritic cells (DC), including human peripheral blood (PB) DC. In rheumatoid arthritis (RA), synovial fluid (SF) DC express markers of differentiation and are effective APC despite abundant synovial IL-10. The regulation of DC responsiveness to IL-10 was therefore examined by comparing the effect of IL-10 on normal PB and RA SF DC. Whereas IL-10 down-modulated APC function and MHC class II and B7 expression of PB DC, IL-10 had no such effect on SF DC. Since SF DC have differentiated in vivo in the presence of proinflammatory cytokines, PB DC were cocultured in the presence of IL-10 and either GM-CSF, IL-1beta, TNF-alpha, IL-6, or TGF-beta. GM-CSF, IL-1beta, and TNF-alpha were all able to restore APC function. Whereas the effects of IL-10 on PB DC were shown to be mediated by IL-10R1, neither PB nor RA SF DC constitutively expressed IL-10R1 mRNA or detectable surface protein. In contrast, IL-10R1 protein was demonstrated in PB and SF DC whole cell lysates, suggestive of predominant intracellular localization of the receptor. Thus, DC responsiveness to IL-10 may be regulated through modulation of cell surface IL-10R1 expression or signaling.  相似文献   

12.
In vitro monocyte-derived macrophages (MDMac) and synovial fluid macrophages from inflamed joints differ from monocytes in their responses to interleukin 4 (IL-4). While IL-4 can suppress LPS-induced interleukin beta (IL-beta) and tumour necrosis factor alpha (TNF-alpha) production by monocytes, IL-4 can suppress LPS-induced IL-1 beta, but not TNFalpha production by the more differentiated cells. Recently we reported a correlation between the ability of IL-4 to regulate TNFalpha production by monocytes and the expression of the IL-4 receptor gamma chain or gamma common (gamma c chain). Like MDMac, interferon alpha (IFNalpha)-treated monocytes expressed less IL-4 receptor gamma c chain, reduced levels of IL-4-activated STAT6 and IL-4 could not suppress LPS-induced TNFalpha production. In addition, like monocytes and MDMac, IFNalpha-treated monocytes expressed normal levels of the IL-4 receptor alpha chain and IL-4 significantly suppressed LPS-induced IL-1 beta production. With addition of IFNalpha-neutralizing antibodies, the ability of IL-4 to suppress LPS-induced TNFalpha production with prolonged monocyte culture was restored. Detection of IFNalpha in synovial fluids from inflamed joints further implicates IFNalpha in the inability of IL-4 to suppress TNFalpha production by synovial fluid macrophages. This study identifies a mechanism for the differential expression of gamma c and varied responses to IL-4 by human monocytes compared with MDMac.  相似文献   

13.
Much evidence implicates IL-8 as a major mediator of inflammation and joint destruction in rheumatoid arthritis. The effects of IL-8 and its related ligands are mediated via two receptors, CXCR1 and CXCR2. In the present study, we demonstrate that a potent and selective nonpeptide antagonist of human CXCR2 potently inhibits (125)I-labeled human IL-8 binding to, and human IL-8-induced calcium mobilization mediated by, rabbit CXCR2 (IC(50) = 40.5 and 7.7 nM, respectively), but not rabbit CXCR1 (IC(50) = >1000 and 2200 nM, respectively). These data suggest that the rabbit is an appropriate species in which to examine the anti-inflammatory effects of a human CXCR2-selective antagonist. In two acute models of arthritis in the rabbit induced by knee joint injection of human IL-8 or LPS, and a chronic Ag (OVA)-induced arthritis model, administration of the antagonist at 25 mg/kg by mouth twice a day significantly reduced synovial fluid neutrophils, monocytes, and lymphocytes. In addition, in the more robust LPS- and OVA-induced arthritis models, which were characterized by increased levels of proinflammatory mediators in the synovial fluid, TNF-alpha, IL-8, PGE(2), leukotriene B(4), and leukotriene C(4) levels were significantly reduced, as was erythrocyte sedimentation rate, possibly as a result of the observed decreases in serum TNF-alpha and IL-8 levels. In vitro, the antagonist potently inhibited human IL-8-induced chemotaxis of rabbit neutrophils (IC(50) = 0.75 nM), suggesting that inhibition of leukocyte migration into the knee joint is a likely mechanism by which the CXCR2 antagonist modulates disease.  相似文献   

14.
Tobacco smoking has been associated with impaired pulmonary functions and increased incidence of infections; however, mechanisms that underlie these phenomena are poorly understood. In this study, we examined whether smokers' alveolar macrophages (AM) exhibit impaired sensing of bacterial components via TLR2 and TLR4 and determined the effect of smoking on expression levels of TLR2, TLR4 and coreceptors, and activation of signaling intermediates. Smokers' AMs exhibited reduced gene expression and secretion of proinflammatory cytokines (TNF-alpha, IL-1beta, IL-6) and chemokines (RANTES and IL-8) upon stimulation with TLR2 and TLR4 agonists, S-[2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-Cys-(S)-Ser-Lys4-OH trihydrochloride (Pam(3)Cys), and LPS, whereas expression of anti-inflammatory cytokines (IL-10 and IL-1 receptor antagonist) was not affected. TLR3 activation with polyinosinic-polycytidylic acid led to comparable or even higher cytokine responses in smokers' AMs, indicating that smoking-induced suppression does not affect all TLRs. Comparable expression of cytokines and chemokines was detected in PBMC and purified monocytes obtained from smokers and nonsmokers, demonstrating that the suppressive effect of smoking is restricted to the lung. TLR2/4-inducible IL-1R-associated kinase-1 (IRAK-1) and p38 phosphorylation and NF-kappaB activation was suppressed in smokers' AMs, whereas TLR2, TLR4, CD14, MD-2 mRNA levels, and TLR4 protein expression were not altered. These data suggest that changes in expression and/or activities of signaling intermediates at the postreceptor level account for smoking-induced immunosuppression. Thus, exposure of AMs to tobacco smoke induces a hyporesponsive state similar to endotoxin tolerance as manifested by inhibited TLR2/4-induced expression of proinflammatory cytokines, chemokines, and impaired activation of IRAK-1, p38, and NF-kappaB, resulting in suppressed expression of proinflammatory mediators.  相似文献   

15.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

16.
Connor TJ  Kelly JP  McGee M  Leonard BE 《Life sciences》2000,67(13):1601-1612
In this study we examined the effects of methylenedioxymethamphetamine (MDMA) administration on responsiveness to an in vivo immune challenge with lipopolysaccharide (LPS; 100 microg/kg; i.p.). LPS produced an increase in circulating IL-1beta and TNF-alpha in control animals. MDMA (20 mg/kg; i.p.) significantly impaired LPS-induced IL-1beta and TNF-alpha secretion. The suppressive effect of MDMA on IL-1beta secretion was transient and returned to control levels within 3 hours of administration. In contrast, the MDMA-induced suppression of TNF-alpha secretion was evident for up to 12 hours following administration. In a second study we examined the effect of co-administration of MDMA (5, 10 and 20 mg/kg; i.p.) on LPS-induced IL-1beta and TNF-alpha secretion, and demonstrated that all three doses potently suppressed LPS-induced TNF-alpha secretion, but only MDMA 10 and 20 mg/kg suppressed LPS-induced IL-1beta secretion. In addition, serum MDMA concentrations displayed a dose-dependent increase, with the concentrations achieved following administration of 5 and 10 mg/kg being in the range reported in human MDMA abusers. In order to examine the possibility that the suppressive effect of MDMA on IL-1beta and TNF-alpha could be due to a direct effect of the drug on immune cells, the effect of in vitro exposure to MDMA on IL-1beta and TNF-alpha production in LPS-stimulated diluted whole blood was evaluated. However IL-1beta or TNF-alpha production were not altered by in vitro exposure to MDMA. In conclusion, these data demonstrate that acute MDMA administration impairs IL-1beta and TNF-alpha secretion following an in vivo LPS challenge, and that TNF-alpha is more sensitive to the suppressive effects of MDMA than is IL-1beta. However the suppressive effect of MDMA on IL-1beta and TNF-alpha could not be attributed to a direct effect on immune cells. The relevance of these findings to MDMA-induced immunomodulation is discussed.  相似文献   

17.
TLR recognition activates the secretion of pro- and anti-inflammatory cytokines and it also modulates the expression of crucial molecules involved in phagocytosis and antimicrobial activity. Scavenger receptors can act as TLR co-receptors or facilitate antigen loading. However, it remains unknown whether TLR can modulate the expression of these scavenger receptors. We stimulated human peripheral blood mononuclear cells (PBMC) with TLR2 (Pam3CSK4 and FSL1) and TLR4 ligand lipopolysaccharide (LPS) and then analyzed CD36 expression on different monocyte subpopulations by flow cytometry. TLR2 and TLR4 ligands can downregulate CD36 on the surface of monocytes, guiding the protein to intracellular compartments. Even though TLR-activation induced TNFα, IL-10 and IL-6 production, only recombinant TNFα was able to downregulate CD36. Neutralizing anti-TNFα antibodies showed that the Pam3CSK4 and FSL1-induced downregulation was partially mediated by TNFα but not by IL-6 or IL-10. However, LPS-induced downregulation could have also been caused by direct TLR4 targeting and signaling, and/or mediated by other unknown factors. CD36 downregulation reduced the capability of monocytes to phagocyte apoptotic neutrophils. In conclusion, modulation of scavenger receptor expression by TLR targeting on monocytes has functional consequences. Characterization this complex regulation may help us to understand this innate response and develop specific therapeutic drugs for each mechanism.  相似文献   

18.
Previous studies have implicated a role for heterotrimeric G protein-coupled signaling in B cells, monocytes, and macrophages stimulated with LPS and have shown that G proteins coimmunoprecipitate with membrane-bound CD14. In this study, we have extended these observations in human dermal microvessel endothelial cells (HMEC) that lack membrane-bound CD14 and in murine macrophages to define further the role of heterotrimeric G proteins in TLR signaling. Using the wasp venom-derived peptide, mastoparan, to disrupt G protein-coupled signaling, we identified a G protein-dependent signaling pathway in HMEC stimulated with TLR4 agonists that is necessary for the activation of p38 phosphorylation and kinase activity, NF-kappaB and IL-6 transactivation, and IL-6 secretion. In contrast, HMEC activation by TLR2 agonists, TNF-alpha, or IL-1beta was insensitive to mastoparan. In the murine macrophage cell line, RAW 264.7, and in primary murine macrophages, G protein dysregulation by mastoparan resulted in significant inhibition of LPS-induced signaling leading to both MyD88-dependent and MyD88-independent gene expression, while TLR2-mediated gene expression was not significantly inhibited. In addition to inhibition of TLR4-mediated MAPK phosphorylation in macrophages, mastoparan blunted IL-1R-associated kinase-1 kinase activity induced by LPS, but not by TLR2 agonists, yet failed to affect phosphorylation of Akt by phosphoinositol-3-kinase induced by either TLR2- or TLR4-mediated signaling. These data confirm the importance of heterotrimeric G proteins in TLR4-mediated responses in cells that use either soluble or membrane-associated CD14 and reveal a level of TLR and signaling pathway specificity not previously appreciated.  相似文献   

19.
The recognition of bacterial lipopolysaccharide (LPS) is principally mediated by either membrane-bound or soluble form of the glycoprotein CD14 and CD14-associated signal transducer, toll-like receptor 4 (TLR4). Recent findings indicate that the serine protease inhibitor, alpha1-antitrypsin (AAT), may not only afford protection against proteolytic injury, but may also neutralize microbial activities and affect regulation of innate immunity. We postulated that AAT affects monocyte responses to LPS by regulating CD14 expression and soluble CD14 release. Here we show that a short-term (up to 2h) monocyte exposure to AAT alone or in combination with LPS leads to a remarkable induction of CD14 levels. In parallel, a short-term (2h) cell exposure to AAT/LPS significantly enhances LPS-induced NF kappaB (p50 and p65) activation in conjunction with increased TNFalpha, IL-1 beta and IL-8 release. In contrast, longer term incubation (18 h) of monocytes with combined AAT/LPS results in a significant reduction in expression of both CD14 and TLR4, inhibition of LPS-induced TNFalpha, IL-1 beta and IL-8 mRNA and protein expression. These findings provide evidence that AAT is an important regulator of CD14 expression and release in monocytes and suggest that AAT may be involved in LPS neutralization and prevention of over-activation of monocytes in vivo.  相似文献   

20.
We have tested the ability of protein I/II, an adhesin from oral streptococci, to stimulate the production of pro-inflammatory cytokines by synovial cells isolated from both rheumatoid arthritis and control patients. Protein I/II triggers synovial fluid cells to produce interleukin (IL)-6 and IL-8 while secretion of tumor necrosis factor-alpha (TNF-alpha) was less enhanced. Using fibroblast-like synoviocytes, we found that protein I/II also exerts an immunomodulatory effect (IL-6 and IL-8 release) on these cells. These findings indicate that, if it gains access to the joint cavity, protein I/II could participate in the initiation and/or perpetuation of rheumatic diseases, by stimulating pro-inflammatory cytokine release from various synovial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号