首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Golgi complex beads are 10 nm particles arranged in rings on the smooth forming face of the Golgi complex that stain specifically with bismuth in arthropod cells. In vitro experiments with biological molecules spotted on to cellulose acetate strips indicated that bismuth bound to the beads through phosphate groups. We could detect a weak phosphorus signal from the beads using a new technique called electron spectroscopic imaging that is capable of very high spatial resolution (0.3–0.5 nm) and sensitivity (50 atoms of phosphorus). Detection was not obscured by tissue staining with bismuth or uranyl acetate or by using an inorganic buffer (Na cacodylate). Localization of phosphorus was greatly improved by using colour-enhanced computer pictures of the electron spectroscopic images and quantitating the images. The results indicate that the phosphorus content of the beads is large enough to account for their bismuth reactivity.  相似文献   

2.
M Locke  P Huie 《Tissue & cell》1977,9(2):347-371
Bismuth salts on aldehyde fixed tissue give a highly selective pattern of staining suitable for light and electron microscopy. Structures stained include the nucleolus, ribosomes, inter- and perichromatin granules, the Golgi complex beads and the outer face of the tubule doublets of mouse sperm, certain neurosecretory vesicles believed to contain biogenic amines, some junctions (some central synapses, neuromuscular junctions, tight junctions), specialized membranes such as the post acrosomal dense lamina of mouse sperm and the inner alveolar membrane of Paramecium, and a variety of structures associated with the cytoplasmic face of membranes, such as plasma membrane plaques, cleavage furrows, the leading edge of the spreading acrosome and sperm annuli.Staining is not reduced by nucleases and spot tests show no reaction between nucleic acids and bismuth under conditions similar to those used to stain tissues. However, spot tests do show strong binding of bismuth by basic proteins and by some phosphorylated molecules.It is hypothesized that bismuth reacts with cell components in two ways, distinguishable by their glutaraldehyde sensitivity. For example, staining of the nucleolus and ribosomes is blocked by glutaraldehyde but the inter- and perichromatin granules and the GC beads are unaffected. Spot tests show that basic proteins (histones, protamines, polylysine and polyargenine) and other molecules with free amino groups (5HT, tryptamine, dopamine) bind bismuth strongly, a reaction that is blocked to varying degrees by glutaraldehyde. We presume that most bismuth staining of tissues is due to reaction with amine groups and is glutaraldehyde sensitive and some may be due to guanidine groups which are less sensitive to fixation by glutaraldehyde. Organic phosphates may be the cause of the glutaraldehyde insensitive staining since ATP and some other phosphates bind bismuth in a reaction that is not blocked by glutaraldehyde.  相似文献   

3.
Chick embryo mitochondria, studied with the electron microscope, show crista-free areas of low electron opacity. These areas are observable after fixation with osmium tetroxide, calcium permanganate, potassium permanganate, formaldehyde, acrolein, acrolein followed by osmium tetroxide, uranyl acetate followed by calcium permanganate, and acetic acid-alcohol. Staining of sections with lead hydroxide or uranyl acetate, or with both, resulted in an increased density of a fibrous material within these areas. The appearance of the fibrous structures varied with the fixative employed; after fixation with osmium tetroxide the material was clumped and bar-like (up to 400 A in diameter), whereas after treatment of osmium tetroxide-fixed tissues with uranyl acetate before dehydration the fibrous structures could be visualized as 15 to 30 A fibrils. Treatment with ethylenediaminetetraacetate (EDTA) in place of uranyl acetate coarsened the mitochondrial fibrils. After fixation with calcium permanganate or potassium permanganate, or a double fixation by uranyl acetate followed by calcium permanganate, the fibers appeared to have a pattern and ultrastructure similar to that observed after the osmium tetroxide-uranyl acetate technique, except that some of them had a slightly greater diameter (up to 50 A). Other fixatives did not preserve the fibers so well. The fibers appeared strongly clumped by formaldehyde fixation, and were difficult to identify after fixation with acrolein or acetic acid-alcohol. The staining of nucleic acid-containing structures by uranyl acetate and lead hydroxide was improved by treatment of osmium tetroxide-fixed sections with hydrogen peroxide, and the mitochondrial fibers also had an increased density in the electron beam after this procedure. The staining characteristics suggest the fibrous material of chick embryo mitochondria to be a nucleic acid-containing structure, and its variable appearance after different fixations parallels that previously reported, or described in this paper, for the nucleoplasm of bacteria and blue-green algae. The results, in addition to those described in the accompanying communication, indicate that these mitochondria contain DNA.  相似文献   

4.
P Park  T Ohno  Y Kawa  S Manabe 《Stain technology》1988,63(4):229-234
An alkaline solution of bismuth subnitrate reacted well with the cell membranes and cell walls of formaldehyde-glutaraldehyde potassium permanganate fixed Alternaria spores, demonstrating them with greater contrast than in sections stained with uranyl acetate and lead citrate. Optimal fine structure of fungal spores was obtained by en bloc staining with alkaline bismuth solution after aldehyde and permanganate fixation. The contrast of the cell organelles and cell walls was high enough in sections cut after the alkaline bismuth en bloc stain for direct ultrastructural observation. Our results indicate that the alkaline bismuth stain is useful either as an en bloc or section stain for aldehyde and permanganate fixed fungal spores.  相似文献   

5.
THE USE OF BISMUTH AS AN ELECTRON STAIN FOR NUCLEIC ACIDS   总被引:1,自引:1,他引:0       下载免费PDF全文
Evidence is presented to show that bismuth combines in vitro with the phosphate of nucleic acids in a manner similar to its reaction with inorganic phosphate. When tested under similar conditions, protein exhibited no attraction for bismuth. The results of the in vitro experiments, which are of interest within themselves, may be indirectly applicable to in vivo staining. Dividing cells of onion root tips were fixed in OsO4, stained with bismuth, and examined in the electron microscope. The electron opacity of cell structures known to contain nucleic acids was enhanced by bismuth, while organelles known to lack appreciable quantities of DNA or RNA showed little, if any, change. Bismuth is particularly effective as a stain for the chromatin material during interphase and for the chromosomes during division.  相似文献   

6.
An alkaline solution of bismuth subnitrate reacted well with the cell membranes and cell walls of formaldehyde-glutaraldehyde potassium permanganate fixed Alternaria spores, demonstrating them with greater contrast than in sections stained with uranyl acetate and lead citrate. Optimal fine structure of fungal spores was obtained by en bloc staining with alkaline bismuth solution after aldehyde and permanganate fixation. The contrast of the cell organelles and cell walls was high enough in sections cut after the alkaline bismuth en bloc stain for direct ultrastructural observation. Our results indicate that the alkaline bismuth stain is useful either as an en bloc or section stain for aldehyde and permanganate fixed fungal spores.  相似文献   

7.
THE FINE STRUCTURE OF ELASTIC FIBERS   总被引:23,自引:8,他引:15       下载免费PDF全文
The fine structure of developing elastic fibers in bovine ligamentum nuchae and rat flexor digital tendon was examined. Elastic fibers were found to contain two distinct morphologic components in sections stained with uranyl acetate and lead. These components are 100 A fibrils and a central, almost amorphous nonstaining area. During development, the first identifiable elastic fibers are composed of aggregates of fine fibrils approximately 100 A in diameter. With advancing age, somewhat amorphous regions appear surrounded by these fibrils. These regions increase in prominence until in mature elastic fibers they are the predominant structure surrounded by a mantle of 100 A fibrils. Specific staining characteristics for each of the two components of the elastic fiber as well as for the collagen fibrils in these tissues can be demonstrated after staining with lead, uranyl acetate, or phosphotungstic acid. The 100 A fibrils stain with both uranyl acetate and lead, whereas the central regions of the elastic fibers stain only with phosphotungstic acid. Collagen fibrils stain with uranyl acetate or phosphotungstic acid, but not with lead. These staining reactions imply either a chemical or an organizational difference in these structures. The significance and possible nature of the two morphologic components of the elastic fiber remain to be elucidated.  相似文献   

8.
Oriented fibres of extracted nucleohistone were employed as test material in a study of satisfactory fixation, embedding, and staining methods for structures containing a high proportion of nucleic acid. Fixation in buffered osmium tetroxide solution at pH 6, containing 10-2 M Ca++, and embedding in Araldite enabled sections of the fibres to be cut in which the orientation was well preserved. These could be strongly stained in 2 per cent aqueous uranyl acetate, and showed considerable fine structure. Certain regions in the nuclei of whole thymus tissue could also be strongly stained by the same procedure, and were identical with the regions stained by the Feulgen procedure in adjacent sections. Moreover, purified DNA was found to take up almost its own dry weight of uranyl acetate from 2 per cent aqueous solution. Strongest staining of whole tissue was obtained with very short fixation times-5 minutes or so at 0°C. Particularly intense staining was obtained when such tissue stained in uranyl acetate was further stained with lead hydroxide. Although the patterns of staining by lead hydroxide alone and by uranyl acetate were similar in tissues fixed for longer times (½ hour to 2 hours, at 0°C or 20°C), in briefly fixed material the DNA-containing regions appeared relatively unstained by lead hydroxide alone, whilst often there was appreciable staining of RNA-containing structures. Observations on the staining of some viruses by similar techniques are also described.  相似文献   

9.
Lipopolysaccharides from phase I (LPSI) Coxiella burnetii Ohio and Nine Mile strains and from phase II (LPSII) Nine Mile stain were negatively and positively and examined with the electron microscope. The ultrastructure of LPSI and LPSII positively stained with uranyl formate or uranyl acetate was ribbon-like. When negatively stained with uranyl acetate, LPSI was ribbon-like but LPSII exhibited hexagonal lattice structures. However, LPSII stained negatively with sodium phosphotungstate and ammonium molybdate exhibited hexagonal lattice ultrastructures which were not identical to those observed when negatively stained with uranyl acetate. The hexagonal lattice structures formed in vitro were due to the interactions of LPSII and the staining reagents rather than to protein-LPS interactions. The differences in the ultrastructures of LPSI and LPSII are undoubtedly based on variations in their chemical composition.  相似文献   

10.
Studies have been carried out on the synapses in the cerebral cortex of rat by using impregnation with ethanolic solution of phosphotungstic acid, contrast staining with ruthenium red and impregnation with bismuth iodide, with or without subsequent uranyl acetate and lead citrate staining. It has been established that dense projections are adequately visualized with methods demonstrating basic chemical groups (phosphotungstic acid and bismuth iodide), whereas the synaptic vesicles are stained by techniques demonstrating acid chemical groups (ruthenium red and uranyl acetate and lead citrate). On the basis of these observations a hypothesis is forwarded concerning the mechanisms of migration of synaptic vesicles towards the presynaptic membrane. Measurements of the parameters of the dense projections suggest that the configuration of the presynaptic vesicular grid is not uniform along the presynaptic areas.  相似文献   

11.
Summary— Ultra-thin sections of Chironomus salivary glands were stained in a non-Feulgen procedure with osmium ammine-B and imaged at several electron energy-loss windows. For two types of RNP-containing structures (ie Balbiani ring granules and endoplasmic reticulum), a significant spatial correlation was observed between stain distribution and net phosphorus distribution. Non-Feulgen osmium ammine-B staining does not require the use of ultra-thin sections and can approximate the distribution of nucleic acid phosphorus.  相似文献   

12.
Herpetomonas samuelpessoai has membrane-bound electrondense granules in its cytoplasm. The electron density independs on postfixation with osmium tetroxide and is enhanced by uranyl acetate staining. The granules contain iron, have basic proteins cytochemically detected by the silver ammoniacal method, and have a peroxidase activity as detected by the diaminobenzidine method. Some of the granules also have acid phosphatase activity. It is suggested that the granules may represent either lysosomes or a storage form of tetrapyrrole derivatives which are essential for the growth and metabolism of most Trypanosomatidae.  相似文献   

13.
Use of tannic acid (TA), in sequence with ferric chloride, uranyl acetate or gold chloride resulted in staining of selective but sometimes different sites in paraffin sections. TA-uranyl acetate of TA-ferric chloride stained sites rich in complex carbohydrates, wherease TA-gold chloride stained the collagen of various connective tissues different shades of red-purple to gray-black. Applied to epoxy-embedded thin sections of tissues fixed with glutaraldehyde and not post-osmicated, TA-uranyl acetate and TA-ferric chloride imparted density to subcellular sites known to contain a high concentration of mucosubstances, such as secretory granules and cisternae of the Golgi complex of certain cells. TA-gold chloride proved unsatisfactory for ultracytochemistry because of its tendency to form globular precipitates on thin sections. The effect of blockage procedures at the light microscopic level indicated that vicinal glycols are not required for binding of TA to tissue sites. Electrostatic forces were shown to be of minimal significance, whereas hydrogen bonding appeared to play a part in both TA-tissue and TA-metal binding mechanisms.  相似文献   

14.
The spreading technique proposed by Miller and Beatty in 1969 allowed for the first time the visualization at transmission electron microscopy of nucleic acids and chromatin in an isolated and distended conformation. This approach is beneficial since it can reveal many aspects of chromatin organization and function that otherwise can only be indirectly inferred by biochemical methods. The final step of staining chromatin spreads is critical because it can strongly influence the interpretation of the results. We evaluated different staining techniques, and almost all provided a good result. Specifically, well-contrasted micrographs were obtained when staining with H3PW12O40 (phosphotungstic acid, PTA), as originally proposed by Miller and Beatty, and with two alternatives proposed here: uranyl acetate or terbium citrate. Quite a good contrast of the spread DNA could also be achieved using osmium ammine; while no or little contrast of nucleic acids was observed by staining with KMnO₄ (potassium permanganate) and H3PMo12O40 (phosphomolybdic acid, PMA) respectively.Key words: Chromatin spread, transmission electron microscopy, staining techniques  相似文献   

15.
Highly phosphorylated proteins in situ in sections of Lowicryl-embedded cells are preferentially stained by bismuth, provided that the reactivity of the amino groups is blocked by glutaraldehyde fixation. This study showed that bismuth staining can be preceded by indirect immunocytochemistry using gold particles as markers. As a result, both immunostained and bismuth-stained proteins can be detected concomitantly on the same section. This was also carried out on sections of formaldehyde-fixed cells which were immunolabeled, then post-fixed with glutaraldehyde, and finally exposed to bismuth stain. These procedures were applied to sections of adenovirus Type 5-infected HeLa cells. Bismuth ions and viral anti-72 KD antibody bound concomitantly to intranuclear virus-induced single-stranded DNA (ssDNA) accumulation sites, structures in which viral replicative activity is intermittent, and also to the fibrillogranular peripheral replicative zones which surround the ssDNA accumulation sites and in which replication of viral genomes is continuous. The delicate fibrillar network enclosed within virus-induced compact rings of unknown function is slightly bismuth stained and binds few antibodies to viral 72 KD protein. Three intranuclear structures were stained exclusively with bismuth: the fibrillar component of the nucleolus, which is involved in ribosome formation; the interchromatin granules; and the virus-induced "fibrillar spots" of unknown significance. Thus, not all highly phosphorylated proteins in adenovirus-infected cells are viral 72 KD protein. In glutaraldehyde-fixed Miller spreads of nucleic acid molecules from adenovirus-infected cells, bismuth deposits occurred over unique thick filaments, the only portion of the viral deoxyribonucleoprotein molecules shown to be associated with viral 72 KD protein. In vitro studies revealed that the latter protein, known to be multiply phosphorylated, concomitantly binds anti-72 KD antibody and bismuth ions. These data have broadened the scope of the use of bismuth staining. Taken together, they indicate that in adenovirus infection highly phosphorylated proteins accumulate over intranuclear structures related to both replication of viral genomes and alteration of ribosomal metabolism.  相似文献   

16.
The nucleolus during epidermal development in an insect   总被引:1,自引:0,他引:1  
M. Locke  P. Huie 《Tissue & cell》1980,12(1):175-195
The fifth stadium of Calpodes has two phases of epidermal cell development corresponding to preparation for intermoult and for moult syntheses. Both phases begin with a period of elevated RNA synthesis and the elaboration of a multilobed nucleolus. The apparent number of nucleoli changes from about two to eight and back to two again within the few hours of elevated RNA syntheses. The nucleolar changes are preceded by elevated litres of haemolymph ecdysteroid. During the two periods of activity, alveoli in the matrix of the nucleoli contain particles believed to be ribosomal precursors. The staining properties of these granules differ according to size in a way that suggests a developmental sequence. Mature granules are about 20 nm in diameter and do not stain with bismuth. They are found at the periphery of the nucleolus, in the nucleoplasm, at the approaches to and within the nucleopores. Perichromatin granules, believed to be m-RNA precursor packages, are up to 60 nm in diameter, do stain with bismuth and are found at the periphery of chromatin, in nucleoplasm and distorted at the approaches to the nuclear pores to fit within the central channel. During these periods of heightened activity the nuclear envelope contains microvesicles that may be free or attached to either nuclear or cytoplasmic surfaces. The structure is appropriate for the microvesicular transnuclear envelope movement of molecules such as the ecdysteroid believed to initiate the nuclear changes.  相似文献   

17.
This article describes new ultrastructural staining methods for osmicated tissues based on the incubation of sections with sodium metaperiodate and sodium borohydride solutions before uranyl/lead staining. Sections incubated with sodium metaperiodate and sodium borohydride, treated with Triton X-100, and stained with ethanolic uranyl acetate/lead citrate showed a good contrast for the nucleolus and the interchromatin region, whereas the chromatin masses were bleached. Chromatin bleaching depended on the incubation with these oxidizing (metaperiodate) and reducing (borohydride) agents. Other factors that influenced the staining of the chromatin masses were the en bloc staining with uranyl acetate, the incubation of sections with Triton X-100, and the staining with aqueous or ethanolic uranyl acetate. The combination of these factors on sections treated with metaperiodate/borohydride provided a different appearance to the chromatin, from bleached to highly contrasted. Most cytoplasmic organelles showed a similar appearance with these procedures than with conventional uranyl/lead staining. However, when sections were incubated with metaperiodate/borohydride and Triton X-100 before uranyl/lead staining, the collagen fibers, and the glycocalix and zymogen granules of pancreatic acinar cells, appeared bleached. The possible combination of these methods with the immunolocalization of the amino acid taurine was also analyzed. (J Histochem Cytochem 50:11-19, 2002)  相似文献   

18.
Lead ions at similar concentrations to those used for Gomori type phosphatase localization stain some parts of the vacuolar system, particularly compartments of the Golgi complex (GC) and isolation envelopes (im) in a characteristic way in both vertebrates and invertebrates. After fixation in 2.5% glutaraldehyde, lead citrate in acetate or aspartate buffer (pH 5.5-7.2) leaves the contents of GC cisternal compartments with a fine particulate stippling. In the fat body of Calpodes ethlius and in mouse pancreas the staining is faint but definite without further enhancement of contrast, although it is easily overlooked after section staining. The distribution of lead stain differs from that of the lead phosphate precipitated after Gomori type acid phosphatase reactions. Whereas lead stain may be in all GC and im compartments, acid phosphatase is restricted to the innermost saccules and nearby vacuoles. The compartment specific staining by led also differs from the generalized staining in all compartments given by uranyl. Thus the contents of luminal membrane surfaces of some parts of the vacuolar system can be characterized by their ability to bind lead. In cells where protein synthesis has been blocked by cycloheximide, secretory vesicles are absent and the RER and GC from the generalized staining in all compartments given by uranyl. Thus the contents of luminal membrane surfaces of some parts of the vacuolar system can be characterized by their ability to bind lead. In cells where protein synthesis has been blocked by cycloheximide, secretory vesicles are absent and the RER and GC from the generalized staining in all compartments given by uranyl. Thus the contents of luminal membrane surfaces of some parts of the vacuolar system can be characterized by their ability to bind lead. In cells where protein synthesis has been blocked by cycloheximide, secretory vesicles are absent and the RER and GC cisternae are devoid of uranyl stainable material. However, lead staining and acid phosphatase activity in the GC continue. We presume that they mark the environment within these cisternae rather than the proteins passing through them. This environment is itself not static. Several observations suggest that the function of cisternae that is detectable by lead staining is temporally discontinuous and related to a stage of maturation or development. Only early stage ims stain: the staining ceases by the beginning of autophagy after hydrolytic enzymes are presumed to have been added. Condensing vacuoles cease to stain as the central core crystallizes out. Stain may be absent from one or two GC saccules at any position in the stack as though the phase of lead staining (or lack or it) can move progressively through the system. We conclude that in studies characterizing components of the vacuolar system it is necessary to separate those that mark transient occupants of a compartment from those that mark the compartment itself. Both may vary temporally independently from one another.  相似文献   

19.
Single DNA molecules can be rendered visible in the electron microscope by "staining" with water-soluble salts of heavy metals. The best results were obtained with lanthanum nitrate, uranyl acetate, and lead perchlorate. The molecules appear as filaments approximately 20 A wide. Their length was not determined, but it could be shown that it varied with the molecular weight of the DNA used. The same heavy metal salts will preferentially "stain" the nucleic acid in a protein-DNA complex. Evidence is provided for the possibility of a partial separation of a double-stranded molecule into single strands on adsorption to the supporting film.  相似文献   

20.
The present study has ultrastructurally applied the tannic acid-ferric chloride (TA-Fe) and the TA-uranyl acetate (TA-UA) methods to thin sections of glutaraldehyde-fixed, unosmicated embedded epiphyseal cartilage from rat tibiae to demonstrate complex carbohydrates. The strongest TA-Fe and TA-UA staining was observed after fixation of the specimens in glutaraldehyde containing TA. TA-Fe (pH 1.5) strongly stained matrix granules presumed to be proteoglycan monomers and chondrocyte secretory granules at various maturational stages but did not stain collagen fibrils and glycogen. TA-UA (pH 4.2) strongly stained matrix granules, intracellular glycogen, and chondrocyte secretory granules, and moderately stained collagen fibrils in the cartilage matrix. Ribosomes and nuclei were not stained above background staining with UA alone. In alpha-amylase-digested specimens, all TA-UA-reactive cytoplasmic glycogen was selectively removed. Testicular hyaluronidase digestion of specimens selectively removed TA-UA staining in matrix granules and all TA-Fe staining. When the pH of the UA solution was reduced to 1.5, TA-UA staining of glycogen and collagen was markedly decreased or absent, whereas staining of anionic sites was unaltered and significantly greater than with UA staining alone. Thus the TA-metal salt methods are pH dependent and allow differential intracellular and extracellular localization of complex carbohydrates in cartilage tissues at the electron microscope level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号