首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
曲长凤  宋金明  李宁 《生态学杂志》2014,25(12):3701-3712
水母旺发已成为一种新型海洋生态灾害,使海洋生态系统的结构和功能、海洋生态环境受到严重破坏.本文总结了水母旺发的可能诱因,重点探讨了水母旺发对海水生源要素、溶解氧、酸碱度以及生物群落的影响.结果表明: 水母旺发与其自身生理结构与生活史密切相关,其具有的身体结构简单、生长迅速、繁殖性强、世代间隔时间短及耐不良环境等特点,使其遇合适环境可迅速繁殖.水母旺发的主要直接诱因可能与海水温度变化有关,海水升温可导致水母食物增多,促进水母生殖,尤其对暖温性水母,更易引起水母聚集繁殖,形成旺发.富营养化、气候变化、过渡捕捞、生物入侵、栖息地改变也是水母旺发的重要影响因素.水母旺发可显著影响生源要素的形态和生物地球化学循环,水母排放NH4+和PO43-速率分别为59.1~91.5 μmol N·kg-1·h-1和1.1~1.8 μmol P·kg-1·h-1,可为浮游植物提供8%~10%和21.6%的N和P,释放溶解有机碳速率为1.0 μmol C·g-1·d-1.水母腐烂时总氮和总磷的释放速率可达4000 μmol N·kg-1·d-1和120 μmol P·kg-1·d-1,溶解有机碳的释放速率为30 μmol C·g-1·d-1;水母腐烂可影响水体的酸碱度与溶解氧含量,导致水体严重酸化与缺氧/无氧,pH降幅为1.3,平均耗氧量可达32.8 μmol·kg-1·h-1.水母旺发还可引起某些鱼类与浮游动物生物量的减少与重新分布,浮游微生物增加,间接导致浮游植物增加,引起海洋初级生产的异常.
  相似文献   

2.
Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future.  相似文献   

3.
An 0-group fish survey is conducted annually in the Barents Sea in order to estimate fish population abundance. Data on jellyfish by-catch have been recorded since 1980, although this dataset has never been analysed. In recent years, however, the ecological importance of jellyfish medusae has become widely recognized. In this paper the biomass of jellyfish (medusae) in 0–60 m depths is calculated for the period 1980–2010. During this period the climate changed from cold to warm, and changes in zooplankton and fish distribution and abundance were observed. This paper discusses the less well known ecosystem component; jellyfish medusae within the Phylum Cnidaria, and their spatial and temporal variation. The long term average was ca. 9×108 kg, with some years showing biomasses in excess of 5×109 kg. The biomasses were low during 1980s, increased during 1990s, and were highest in early 2000s with a subsequent decline. The bulk of the jellyfish were observed in the central parts of the Barents Sea, which is a core area for most 0-group fishes. Jellyfish were associated with haddock in the western area, with haddock and herring in the central and coastal area, and with capelin in the northern area of the Barents Sea. The jellyfish were present in the temperature interval 1°C<T<10°C, with peak densities at ca. 5.5°C, and the greatest proportion of the jellyfish occurring between 4.0–7.0°C. It seems that the ongoing warming trend may be favourable for Barents Sea jellyfish medusae; however their biomass has showed a recent moderate decline during years with record high temperatures in the Barents Sea. Jellyfish are undoubtedly an important component of the Barents Sea ecosystem, and the data presented here represent the best summary of jellyfish biomass and distribution yet published for the region.  相似文献   

4.
To date, a disparate array of concepts and methods have been used to study the growth of jellyfish, with the result that few generalities have emerged which could help, e.g., in predicting growth patterns in unstudied species. It is shown that this situation can be overcome by length-frequency analysis (LFA), applied to jellyfish bell diameter (i.e., “length”) frequency data. A selection of LFA methods (ELEFAN, Wetherall plots and length-converted catch curves, all implemented in the FiSAT software) is applied here to 34 sets of bell diameter frequency data of jellyfish. This led to the estimates of parameters of the von Bertalanffy growth function (VBGF), which, especially in its seasonal form, was found to fit the available size-frequency data reasonably well. We also obtained numerous estimates of mortality, useful for modeling the life history of jellyfish. Finally, by scaling their asymptotic weight (W , a parameter of the VBGF) to the weight they would have if they had the same water content as fish, we show that most jellyfish grow at the same rate as small fishes (guppies and anchovies). As in fish, the VBGF parameters K and W , when plotted in a double logarithmic (“auximetric”) plot, tend to cluster into ellipsoid shapes, which increase in area when shifting from species to genera, families, etc. If validated by subsequent studies, auximetric plots for jellyfish would provide a powerful tool for testing comparative hypotheses on jellyfish life history. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

5.
6.
Jellyfish are useful genetic indicators for aquatic ecosystems as they have limited mobility and are highly exposed to the water column. By using comparative genomics and the molecular clock (timetree) of Rhizostoma pulmo, we revealed a divergence point between the East and West Mediterranean Sea (MS) populations that occurred 4.59 million years ago (mya). It is suggested that the two distinct ecological environments we know today were formed at this time. We propose that before this divergence, the highly mixed Atlantic and Mediterranean waters led to the wide dispersal of different species including Rpulmo. At 4.59 mya, the Western and Eastern MS were formed, indicating the possibility of a dramatic environmental event. For the first time, we find that for the jellyfish we examined, the division of the MS in east and west is not at the Straits of Sicily as generally thought, but significantly to the east. Using genomics of the Aurelia species, we examined contemporary anthropogenic impacts with a focus on migration of scyphozoa across the Suez Canal (Lessepsian migration). Aurelia sp. is among the few scyphozoa we find in both the MS and the Red Sea, but our DNA analysis revealed that the Red Sea Aurelia sp. did not migrate or mix with MS species. Phyllorhiza punctata results showed that this species was only recently introduced to the MS as a result of anthropogenic transportation activity, such as ballast water discharge, and revealed a migration vector from Australia to the MS. Our findings demonstrate that jellyfish genomes can be used as a phylogeographic molecular tool to trace past events across large temporal scales and reveal invasive species introduction due to human activity.  相似文献   

7.
Abstract:  Abundant well-preserved jellyfish impressions are described from the Cerin Lagerstätte (Ain, eastern France). The enclosing sediments are lithographic limestones deposited in a Late Kimmeridgian lagoon lying on an emergent reef complex. Two new taxa of Scyphozoa are proposed: Paraurelia cerinensis gen. et sp. nov. (abundant) and Paraurelia sp. A (rare), and two new taxa of Cubozoa: Bipedalia cerinensis gen. et sp. nov. (rare) and Paracarybdea lithographica gen. et sp. nov. (very rare). Rapid covering by a microbial mat helped the preservation of the animals. Many specimens of Paraurelia cerinensis are deformed by slippage down the palaeoslope, which characterizes the margin of the lagoon. Their resultant morphology and their orientation clearly indicate the downslope direction. Tentacles of Bipedalia cerinensis and Paracarybdea lithographica are also orientated according to the palaeoslope. The jellyfish were probably dead individuals occasionally introduced into the Cerin lagoon. However, another hypothesis may be considered with reference to the model of the present-day jellyfish lakes in Palau (Caroline Islands, Western Pacific). Jellyfish could have lived in the more oxygenated upper layer of water of the Cerin lagoon that allowed pelagic life. This situation could have corresponded to short periods of easier communication between the open sea and the lagoon. Jellyfish are only found in the lower beds of the lithographic limestones and their distribution illustrates the supposed evolution of the Cerin lagoon. Initially, it was deep, mainly flooded, with possibly autochthonous jellyfish and allochthonous animals indicating clear marine influence. Later, the lagoon shallowed and its sediments often emerged with marginal marine burrows and plants indicating increasing terrestrial influence.  相似文献   

8.
Reiji Masuda 《Hydrobiologia》2009,616(1):269-277
Commensal behavior of jack mackerel Trachurus japonicus (Temminck & Schlegel) with jellyfishes has been widely observed but its ecological function is still unclear. The goal of the present research is to examine the function of association behavior with jellyfish in the laboratory and in field observations with an emphasis on ontogenetic changes. In the laboratory, jack mackerel juveniles (mean standard length (SL) = 11, 19, 38, and 55 mm) were placed in 500-l polycarbonate tanks with two live moon jellyfish, Aurelia aurita (Linné), and one artificial jellyfish made of silicon. Association behavior with either live or artificial jellyfish was visually observed under the following conditions: control, presence of a predator model, before and after feeding live Artemia, 1 h and 3 h after feeding, and at night. Jack mackerel at 11 mm SL associated with both the moon jellyfish and artificial jellyfish, unrelated to the presence of a predator model or feeding. Juveniles at 19 mm associated with moon jellyfish only in the presence of a predator model. Larger juveniles associated with moon jellyfish at 1 h and 3 h after feeding. Thus the ecological function of association was proposed to develop first from school formation, next as a hiding place from predators, and then as a food source. Underwater observations of jack mackerel associating with giant jellyfish Nemopilema nomurai (Kishinouye) in two different areas in the Sea of Japan supported this hypothesis. High predation pressure from benthic piscivorous fishes in the southern area (Tsushima) may encourage association with jellyfish, whereas pressure from pelagic predators in the northern area (Maizuru) may encourage settlement to rocky reef habitats in temperate waters. Thus the jellyfish may also function as a vehicle for the northward migration of this species. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

9.
Diving behaviour of jellyfish equipped with electronic tags   总被引:3,自引:0,他引:3  
Jellyfish are one of the most abundant and conspicuous membersof our coastal marine fauna and are now known to play majortrophic roles in marine systems. However, little is known aboutthe movements and behaviour of individuals. We equipped individualcompass jellyfish (Chrysaora hysoscella) (n = 15) off the Dinglecoast, Ireland, with miniature time-depth recorders to log theirdepth over periods of a few hours. Vertical movements were extensive,with all jellyfish changing their depth during tracking. A rangeof vertical movements were seen including initial diving fromthe surface down to a maximum of 29.6 m after device attachment,some jellyfish remaining near the bottom, some moving up anddown in mid-water and some moving back near the surface. Theseresults show that jellyfish actively reposition themselves inthe water column over small time-scales and open the way formore extensive studies equipping jellyfish with electronic tags.  相似文献   

10.
This study examines species-specific distributions of preimaginal black flies (Diptera: Simuliidae) over two large spatial scales (within and across ecoregions) and two seasons (spring and summer). The study area in the western two-thirds of South Carolina, United States, was divided into three ecoregions (Mountains, Piedmont, Sandhills). The mean correct classification of species distributions among stream sites was 81.3%. Predictability of species distributions varied with spatial scale, location, and time. Species occurrence was not independent of ecoregion; distributions of 12 of the 13 species examined at this scale were predictable on the basis of changes in water column (temperature, percentage dissolved oxygen) and channel characters (velocity, streambed-particle size). However, with the exception of the Mountains during the summer, predicting species distributions within ecoregions was far less successful than predicting distributions across these regions; predictability was particularly poor in the Sandhills. Seasonal effects on predictability were most pronounced in the Mountains. As stream sites became more homogeneous, predictive capability declined. Species-level identifications, aided by cytogenetic techniques, were of paramount importance in recognizing the association between species distributions and stream conditions, emphasizing that considerable ecological information is lost when species are not considered. This study emphasizes the critical role of taxonomic resolution, linked with spatial and temporal scale of observation, in elucidating patterns of species assemblages. It also demonstrates that predictability of species distributions at a fixed scale can vary with geographic location and time. Received: 2 May 1997 / Accepted: 22 September 1997  相似文献   

11.
Jellyfish form spectacular blooms throughout the world’s oceans. Jellyfish body plans are characterised by high water and low carbon contents which enables them to grow much larger than non-gelatinous animals of equivalent carbon content and to deviate from non-gelatinous pelagic animals when incorporated into allometric relationships. Jellyfish have, however, been argued to conform to allometric relationships when carbon content is used as the metric for comparison. Here we test the hypothesis that differences in allometric relationships for several key functional parameters remain for jellyfish even after their body sizes are scaled to their carbon content. Data on carbon and nitrogen contents, rates of respiration, excretion, growth, longevity and swimming velocity of jellyfish and other pelagic animals were assembled. Allometric relationships between each variable and the equivalent spherical diameters of jellyfish and other pelagic animals were compared before and after sizes of jellyfish were standardised for their carbon content. Before standardisation, the slopes of the allometric relationships for respiration, excretion and growth were the same for jellyfish and other pelagic taxa but the intercepts differed. After standardisation, slopes and intercepts for respiration were similar but excretion rates of jellyfish were 10× slower, and growth rates 2× faster than those of other pelagic animals. Longevity of jellyfish was independent of size. The slope of the allometric relationship of swimming velocity of jellyfish differed from that of other pelagic animals but because they are larger jellyfish operate at Reynolds numbers approximately 10× greater than those of other pelagic animals of comparable carbon content. We conclude that low carbon and high water contents alone do not explain the differences in the intercepts or slopes of the allometric relationships of jellyfish and other pelagic animals and that the evolutionary longevity of jellyfish and their propensity to form blooms is facilitated by their unique body plans.  相似文献   

12.
Jellyfish as food   总被引:11,自引:0,他引:11  
Jellyfish have been exploited commercially by Chinese as an important food for more than a thousand years. Semi-dried jellyfish represent a multi-million dollar seafood business in Asia. Traditional processing methods involve a multi-phase processing procedure using a mixture of salt (NaCl) and alum (AlK[SO4]212 H2O) to reduce the water content, decrease the pH, and firm the texture. Processed jellyfish have a special crunchy and crispy texture. They are then desalted in water before preparing for consumption. Interest in utilizing Stomolophus meleagris L. Agassiz, cannonball jellyfish, from the U. S. as food has increased recently because of high consumer demand in Asia. Desalted ready-to-use (RTU) cannonball jellyfish consists of approximately 95% water and 4–5% protein, which provides a very low caloric value. Cannonball jellyfish collagen has shown a suppressing effect on antigen-induced arthritis in laboratory rats. With the great abundance of cannonball jellyfish in the U. S. coastal waters, turning this jellyfish into value-added products could have tremendous environmental and economic benefits.  相似文献   

13.
Tinta T  Kogovšek T  Malej A  Turk V 《PloS one》2012,7(6):e39274
Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in bacterial population dynamics and nutrient pathways following jellyfish blooms which have important implications for ecology of coastal waters.  相似文献   

14.
In June and July of 2012, the jellyfish catches in the northeastern portion of the surveyed Pacific waters off the Kuril Islands substantially exceeded those in the southwestern portion. This indicates that jellyfish disperse over the studied area predominantly from the southern Bering Sea and from the eastern coast of Kamchatka. Their strobilation probably takes place as well on the shelf and continental slope of eastern Kamchatka. The distribution of jellyfish with medium-sized bells does not show any geographic pattern; the aggregations that are formed are mixed regarding the original locality of individuals. Jellyfish occur within a broad range of surface water temperatures and their catches have declined significantly only in the southeast of the area of surveys near the Subarctic Front. As is seen from the data we compared, not only the abundance of jellyfish, but their feeding activity and, as a consequence, the amount of consumed food decreased by an order of magnitude during the cold season (in the spring 2011). However, irrespective of the season, the largest quantities of food were recorded in the largest and most numerous jellyfish (Phacellophora camtschatica, Chrysaora melanaster). The quantitative results of the studies on the diet of jellyfish may be somewhat underestimated, as fragile jellyfish bodies are easily damaged in trawl nets and evaluating the diet is possible only for intact individuals. Use of specialized catching gear in the future may help us to specify the feeding dynamics in jellyfish, as well they may provide an opportunity to observe their feeding behavior. At the same time, quantitative estimates of the daily-food intake in jellyfish can be obtained only by taking the rates of digestion and prey consumption found under laboratory conditions into account, with their subsequent verification in balance models.  相似文献   

15.
Forecasting changes in the distributions of macrophytes is essential to understanding how aquatic ecosystems will respond to climate and environmental changes. Previous work in aquatic ecosystems has used climate data at large scales and chemistry data at small scales; the consequence of using these different data types has not been evaluated. This study combines a survey of macrophyte diversity and water chemistry measurements at a large regional scale to demonstrate the feasibility and necessity of including ecological measurements, in addition to climate data, in species distribution models of aquatic macrophytes. A survey of 740 water bodies stratified across 327,000 square kilometers was conducted to document Characeae (green macroalgae) species occurrence and water chemistry data. Chemistry variables and climate data were used separately and in concert to develop species distribution models for ten species across the study area. The impacts of future environmental changes on species distributions were modeled using a range of global climate models (GCMs), representative concentration pathways (RCPs), and pollution scenarios. Models developed with chemistry variables generally gave the most accurate predictions of species distributions when compared with those using climate variables. Calcium and conductivity had the highest total relative contribution to models across all species. Habitat changes were most pronounced in scenarios with increased road salt and deicer influences, with two species predicted to increase in range by >50% and four species predicted to decrease in range by >50%. Species of Characeae have distinct habitat ranges that closely follow spatial patterns of water chemistry. Species distribution models built with climate data alone were insufficient to predict changes in distributions in the study area. The development and implementation of standardized, large‐scale water chemistry databases will aid predictions of habitat changes for aquatic ecosystems.  相似文献   

16.
Understanding the spatial distribution of organism abundance is fundamental to assessing and managing ecological populations. Marine species can be difficult and logistically challenging and expensive to observe. This often results in spatial data containing low detection rates when sampling underwater, biasing spatial predictions from many modeling approaches. We propose a multistage statistical workflow that can use zero inflated sampling data to develop non-linear predictive spatial distributions of reef fish abundance. The workflow includes: (1) an individual-based discrete event simulation which generates simulated survey data under different abundance settings; (2) empirical maximum likelihood analysis to establish the relationship between survey data and abundance from the simulation; (3) a two-step random smoothing method to estimate reliable block spatial abundance around each survey station; (4) an ensemble of different machine learning models which use the estimated abundance from step three as input to compute a stable non-linear prediction of abundance across the entire study area (Gulf of Mexico). Applying our workflow greatly improved the ability to forecast abundance at small spatial scales. The ability to forecast at fine spatial scales is critical when working with species that are patchily distributed. This workflow can apply to many ecological populations to develop abundance maps even if sample data is not well distributed across the study area or is zero inflated.  相似文献   

17.
New habitat on proliferating marine construction may increase jellyfish polyp populations, and thereby increase jellyfish populations worldwide. In this investigation, we examined planula settlement and polyp immigration rates of the scyphozoan Aurelia labiata Chamisso & Eysenhardt, 1821 on six common dock-building materials. The planulae and polyps preferred plastics (expanded polystyrenes, low and high density polyethylene) to rubber and treated wood when choosing habitat on man-made surfaces. Substrate surface texture and the presence/absence of anti-fouling chemicals are discussed as possible causes for these substrate preferences. This study illustrates the potential effects of different man-made structures on jellyfish populations, and provides useful information to coastal managers and port authorities for reduction of biofouling and jellyfish bloom effects. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

18.
Jellyfish blooms cause problems worldwide, and they may increase with global warming, water pollution, and over fishing. Benthic polyps (scyphistomae) asexually produce buds and small jellyfish (ephyrae), and this process may determine the population size of the large, swimming scyphomedusae. Environmental factors that affect the asexual reproduction rates include food, temperature, salinity, and light. In this study, polyps of Aurelia aurita (L.), which inhabit Tapong Bay, southwest Taiwan, were tested in nine combinations of temperature (20, 25, 30°C) and light intensity (372, 56, and 0 lux) in a 12 h light–12 h dark photoperiod. Production of new buds decreased with warmer temperature and stronger light intensity. Warm temperature accelerated strobilation and increased the daily production of ephyrae. The proportion of ephyrae of total asexual reproduction (new buds + ephyrae) increased dramatically in warmer temperature and more light. Survival was reduced in the highest temperature. Strobilation did not occur in the lowest temperature in darkness. All measures of total asexual reproduction indicated that mid- to high temperatures would lead to faster production of more jellyfish. Continuous high temperatures might result in high polyp mortality. Light affected asexual reproduction less than did temperature, only significantly accelerating the strobilation rate. Because the interactive effects of light and temperature were significant for the time period polyps survived and the potential production of jellyfish polyp−1, combined light and temperature effects probably are important for strobilation in situ. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

19.
Among the edible species, jellyfish Rhopilema esculentum, is one of the most abundant and important fishery species in China. The jellyfish fishery is characterized by considerable fluctuations in catch and a very short fishing season. In this article, we first review the research results on the biology of R. esculentum, which previously were published in Chinese, as related to the jellyfish enhancement and fishery. Next, we review results from enhancement experiments conducted from 1984 to 2004, with the aims of stabilizing and increasing catch. During 2005 and 2006, stock enhancement of R. esculentum was carried out on a large scale for the first time in Liaodong Bay, China, where 414 million juvenile jellyfish (umbrella diameter > 1 cm) were released. We present results of these enhancements, including the survey methods, catch prediction, enhancement assessment, and fishery management. In 2005 and 2006, the recapture rate of released jellyfish was 3.0 and 3.2%, respectively. The fishermen earned ¥ 159 million during the 2 years. The ratio of the input (cost of culturing juvenile jellyfish) to the output (value of the sales) was about 1:18. The high commercial value of R. esculentum enhancement in Liaodong Bay makes this a very successful enterprise. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

20.
The influence of light intensity on the fatty acid profiles of the scyphozoan jellyfish Cassiopea sp. and its endosymbiotic zooxanthellae was investigated using a manipulative experiment. The aims of the study were to: 1) identify changes related to light intensity in the fatty acid profiles of the host jellyfish and zooxanthellae; 2) determine if jellyfish exposed to low light intensities compensated for reduced rates of photosynthesis by increasing heterotrophic feeding; and 3) determine if concentrations of zooxanthellae and chlorophyll a (chl a) increased in jellyfish exposed to reduced light intensity. Jellyfish were collected from an artificial urban tidal lake in southeast Queensland, Australia. Two were frozen for immediate analysis and 15 were randomly allocated to each of nine mesocosms. Three replicate mesocosms were then randomly allocated to each of three light treatments: 100%, 25%, and 10% PAR. The mesocosms were supplied with unfiltered, continuous flowing seawater and jellyfish fed on natural zooplankton, supplemented with frozen Mysis shrimp. Three jellyfish were sampled, with replacement, from each mesocosm 3, 15, 22, 39 and 69 days after the experiment commenced. Fatty acids as methyl esters in the host tissue (mesoglea) and zooxanthellae were determined separately using gas chromatography and verified by mass spectrometry. The fatty acid profiles of the host jellyfish and zooxanthellae remained unchanged in the 100% PAR treatment throughout the experiment but varied in the lower light treatments. A decrease in light intensity caused a reduction in the concentrations of some polyunsaturated fatty acids such as 18:1ω9 and 18:4ω3 in the zooxanthellae, the latter being abundant in dinoflagellates. Concomitantly, the concentrations of these fatty acids increased in the host tissues, suggesting a possible transfer of zooxanthellate fatty acids to the jellyfish. Jellyfish in the 10% PAR treatment shrank during the experiment and their fatty acid profiles did not reflect any shift towards increased heterotrophy. On days 22 and 69 concentrations of chl a, zooxanthellae and [chl a] zooxanthella− 1 were determined. [chl a] and [chl a] zooxanthella− 1, initially increased in the lower light treatments but decreased by the end of the experiment indicating that jellyfish may adapt to reduced light intensity in the short-term but that long-term exposure to reduced light results in compromised performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号