首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to examine the effects of pre-exercise glucose and fructose feedings on muscle glycogen utilization during exercise in six well-trained runners (VO2max = 68.2 +/- 3.4 ml X kg-1 X min-1). On three separate occasions, the runners performed a 30 min treadmill run at 70% VO2max. Thirty minutes prior to exercise each runner ingested 75 g of glucose (trial G), 75 g of fructose (trial F) or 150 ml of a sweetened placebo (trial C). During exercise, no differences were observed between any of the trials for oxygen uptake, heart rate or perceived exertion. Serum glucose levels were elevated as a result of the glucose feeding (P less than 0.05) reaching peak levels at 30 min post-feeding (7.90 +/- 0.24 mmol X l-1). With the onset of exercise, glucose levels dropped to a low of 5.89 +/- 0.85 mmol X l-1 at 15 min of exercise in trial G. Serum glucose levels in trials F and C averaged 6.21 +/- 0.31 mmol X l-1 and 5.95 +/- 0.23 mmol X l-1 respectively, and were not significantly different (P less than 0.05). There were also no differences in serum glucose levels between any of the trials at 15 and 30 min of exercise.  相似文献   

2.
We examined the influence of various carbohydrates of fuel homeostasis and glycogen utilization during prolonged exercise. Seventy-five grams of glucose, fructose, or placebo were given orally to eight healthy males 45 min before ergometer exercise performed for 2 h at 55% of maximal aerobic power (VO2max). After glucose ingestion, the rises in plasma glucose (P less than 0.01) and insulin (P less than 0.001) were 2.4- and 5.8-fold greater than when fructose was consumed. After 30 min of exercise following glucose ingestion, the plasma glucose concentration had declined to a nadir of 3.9 +/- 0.3 mmol/l, and plasma insulin had returned to basal levels. The fall in plasma glucose was closely related to the preexercise glucose (r = 0.98, P less than 0.001) and insulin (r = 0.66, P less than 0.05) levels. The rate of endogenous glucose production and utilization rose similarly by 2.8-fold during exercise in fructose group and were 10-15% higher than in placebo group (P less than 0.05). Serum free fatty acid levels were 1.5- to 2-fold higher (P less than 0.01) after placebo than carbohydrate ingestion. Muscle glycogen concentration in the quadriceps femoris fell in all three groups by 60-65% (P less than 0.001) during exercise. These data indicate that fructose ingestion, though causing smaller perturbations in plasma glucose, insulin, and gastrointestinal polypeptide (GIP) levels than glucose ingestion, was no more effective than glucose or placebo in sparing glycogen during a long-term exercise.  相似文献   

3.
Seven healthy male volunteers exercised on a cycle ergometer at 50 +/- 5% VO2max for 180 min, on three occasions during which they ingested either water only (W), [13C]glucose (G), or [13C]fructose (F) (140 +/- 12 g, diluted at 7% in water, and evenly distributed over the exercise period). Blood glucose concentration (in mM) significantly decreased during exercise with W (5.1 +/- 0.4 to 4.2 +/- 0.1) but remained stable with G (5.0 +/- 0.4 to 5.3 +/- 0.6) or F ingestion (5.4 +/- 0.5 to 5.1 +/- 0.4). Decreases in plasma insulin concentration (microU/ml) were greater (P less than 0.05) with W (11 +/- 3 to 3 +/- 1) and F (12 +/- 4 to 5 +/- 1) than with G ingestion (11 +/- 2 to 9 +/- 5), and fat utilization was greater with F (103 +/- 11 g) than with G ingestion (82 +/- 9 g) and lower than with W ingestion (132 +/- 14 g). However F was less readily available for combustion than G; over the 3-h period 75% (106 +/- 11 g) of ingested G was oxidized, compared with 56% (79 +/- 8 g) of ingested fructose. As a consequence, carbohydrate store utilizations were similar in the two conditions (G, 174 +/- 20 g; F, 173 +/- 17 g; vs. W, 193 +/- 22 g). These observations suggest that, during prolonged moderate exercise, F ingestion maintains blood glucose as well as G ingestion, and increases fat utilization when compared to G ingestion. However, due to a slower rate of utilization of F, carbohydrate store sparing is similar with G and F ingestions.  相似文献   

4.
The metabolic responses induced by the ingestion of a beverage containing glucose (G), fructose (F) or placebo (W) 30 min before exercise of high intensity and intermediate duration have been investigated; in these conditions the energy processes are mostly dependent on aerobic reactions. A group of 11 male recreational sportsmen ran on a treadmill, at an intensity corresponding to 82% of peak oxygen consumption, until exhaustion on three different occasions (after ingestion of a beverage containing 75 g of G, 75 g of F or W). Plasma glucose, insulin, and lactic acid concentrations were determined just prior to the ingestion of the beverages, 30 min afterwards and 10 and 30 min after completion of the exercise. The mean endurance time was 644 (SD 261) s after the ingestion of G, 611 (SD 227) s after the ingestion of F and 584 (SD 189) s after the ingestion of the W (P < 0.05 between G and W). No differences in the oxygen uptake, respiratory quotient or lactate concentrations between the three trials were observed. Both plasma glucose and insulin concentrations determined in samples obtained immediately before the onset of exercise were higher when G was ingested than when F (P < 0.05 andP < 0.05, respectively) or W (P < 0.001 and P < 0.005, respectively) were ingested. These findings would suggest that the ingestion of G prior to an effort of intermediate duration may improve physical performance.  相似文献   

5.
We measured substrate utilization during exercise performed with water (W), exogenous glucose (G), and exogenous fructose plus glucose (FG) ingestion in boys age 10-14 yr. Subjects (n = 12) cycled for 90 min at 55% maximal O(2) uptake while ingesting either W (25 ml/kg), 6% G (1.5 g/kg), or 3% F plus 3% G (1.5 g/kg). Fat oxidation increased during exercise in all trials but was higher in the W (0.28 +/- 0.023 g/min) than in the G (0.24 +/- 0.023 g/min) and FG (0.25 +/- 0.029 g/min) trials (P = 0.04). Conversely, total carbohydrate (CHO) oxidation decreased in all trials and was lower in the W (0.63 +/- 0.05 g/min) than in the G (0.78 +/- 0.051 g/min) and FG (0.74 +/- 0.056 g/min) trials (P = 0.009). Exogenous CHO oxidation, as determined by expired (13)CO(2), reached a maximum of 0.36 +/- 0.032 and 0.31 +/- 0.030 g/min at 90 min in G and FG, respectively (P = 0.04). Plasma insulin levels decrease during exercise in all trials but were twofold higher in G than in W and FG (P < 0.001). Plasma glucose levels decreased transiently after the onset of exercise in all trials and then returned to preexercise values in the W and FG (approximately 4.5 mmol/l) trials but were elevated by approximately 1.0 mmol/l in the G trial (P < 0.001). Plasma lactate concentrations decreased after the onset of exercise in all trials but were lower by approximately 0.5 mmol/l in W than in G and FG (P = 0.02). Thus, in boys exercising at a moderate intensity, the oxidation rate of G plus F is slightly less than G alone, but both spare endogenous CHO and fat to a similar extent. In addition, compared with flavored W, the ingestion of G alone and of G plus F delays exhaustion at 90% peak power by approximately 25 and 40%, respectively, after 90 min of moderate-intensity exercise.  相似文献   

6.
It has been previously observed that the thermic effect of a glucose load is potentiated by prior exercise. To determine whether this phenomenon is observed when different carbohydrates are used and to ascertain the role of insulin, the thermic effects of fructose and glucose were compared during control (rest) and postexercise trials. Six male subjects ingested 100 g fructose or glucose at rest or after recovery from 45 min of treadmill exercise at 70% of maximal O2 consumption. Measurements of O2 consumption, respiratory exchange ratio, and plasma concentrations of glucose, insulin, glycerol, and lactate were measured for 3 h postingestion. Although glucose and fructose increased net energy expenditure by 44 and 51 kcal, respectively, over baseline during control trials, exercise increased the thermic effect of both carbohydrate challenges an additional 20-25 kcal (P less than 0.05). Glucose ingestion was associated with large (P less than 0.05) increases in plasma insulin concentration during control and exercise trials, in contrast to fructose ingestion. Because fructose, which is primarily metabolized by liver, and glucose elicited a similar postexercise potentiation of thermogenesis, the results indicate that the thermogenic phenomenon is not limited to skeletal muscle. These results also demonstrate that carbohydrate-induced postexercise thermogenesis is not related to an incremental increase in plasma insulin concentration.  相似文献   

7.
Seven cyclists exercised at 70% of maximal O2 uptake (VO2max) until fatigue (170 +/- 9 min) on three occasions, 1 wk apart. During these trials, plasma glucose declined from 5.0 +/- 0.1 to 3.1 +/- 0.1 mM (P less than 0.001) and respiratory exchange ratio (R) fell from 0.87 +/- 0.01 to 0.81 +/- 0.01 (P less than 0.001). After resting 20 min the subjects attempted to continue exercise either 1) after ingesting a placebo, 2) after ingesting glucose polymers (3 g/kg), or 3) when glucose was infused intravenously ("euglycemic clamp"). Placebo ingestion did not restore euglycemia or R. Plasma glucose increased (P less than 0.001) initially to approximately 5 mM and R rose (P less than 0.001) to approximately 0.83 with glucose infusion or carbohydrate ingestion. Plasma glucose and R then fell gradually to 3.9 +/- 0.3 mM and 0.81 +/- 0.01, respectively, after carbohydrate ingestion but were maintained at 5.1 +/- 0.1 mM and 0.83 +/- 0.01, respectively, by glucose infusion. Time to fatigue during this second exercise bout was significantly longer during the carbohydrate ingestion (26 +/- 4 min; P less than 0.05) or glucose infusion (43 +/- 5 min; P less than 0.01) trials compared with the placebo trial (10 +/- 1 min). Plasma insulin (approximately 10 microU/ml) and vastus lateralis muscle glycogen (approximately 40 mmol glucosyl U/kg) did not change during glucose infusion, with three-fourths of total carbohydrate oxidation during the second exercise bout accounted for by the euglycemic glucose infusion rate (1.13 +/- 0.08 g/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Carbohydrate metabolism during intense exercise when hyperglycemic   总被引:2,自引:0,他引:2  
The effects of hyperglycemia on muscle glycogen use and carbohydrate metabolism were evaluated in eight well-trained cyclists (average maximal O2 consumption 4.5 +/- 0.1 l/min) during 2 h of exercise at 73 +/- 2% of maximal O2 consumption. During the control trial (CT), plasma glucose concentration averaged 4.2 +/- 0.2 mM and plasma insulin remained between 6 and 9 microU/ml. During the hyperglycemic trial (HT), 20 g of glucose were infused intravenously after 8 min of exercise, after which a variable-rate infusion of 18% glucose was used to maintain plasma glucose at 10.8 +/- 0.4 mM throughout exercise. Plasma insulin remained low during the 1st h of HT, yet it increased significantly (to 16-24 microU/ml; P less than 0.05) during the 2nd h. The amount of muscle glycogen utilized in the vastus lateralis during exercise was similar during HT and CT (75 +/- 8 and 76 +/- 7 mmol/kg, respectively). As exercise duration increased, carbohydrate oxidation declined during CT but increased during HT. Consequently, after 2 h of exercise, carbohydrate oxidation was 40% higher during HT than during CT (P less than 0.01). The rate of glucose infusion required to maintain hyperglycemia (10 mM) remained very stable at 1.6 +/- 0.1 g/min during the 1st h. However, during the 2nd h of exercise, the rate of glucose infusion increased (P less than 0.01) to 2.6 +/- 0.1 g/min (37 mg.kg body wt-1.min-1) during the final 20 min of exercise. We conclude that hyperglycemia (i.e., 10 mM) in humans does not alter muscle glycogen use during 2 h of intense cycling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Effect of carbohydrate ingestion on exercise metabolism   总被引:2,自引:0,他引:2  
Five male cyclists were studied during 2 h of cycle ergometer exercise (70% VO2 max) on two occasions to examine the effect of carbohydrate ingestion on muscle glycogen utilization. In the experimental trial (CHO) subjects ingested 250 ml of a glucose polymer solution containing 30 g of carbohydrate at 0, 30, 60, and 90 min of exercise; in the control trial (CON) they received an equal volume of a sweet placebo. No differences between trials were seen in O2 uptake or heart rate during exercise. Venous blood glucose was similar before exercise in both trials, but, on average, was higher during exercise in CHO [5.2 +/- 0.2 (SE) mmol/l] compared with CON (4.8 +/- 0.1, P less than 0.05). Plasma insulin levels were similar in both trials. Muscle glycogen levels were also similar in CHO and CON both before and after exercise; accordingly, there was no difference between trials in the amount of glycogen used during the 2 h of exercise (CHO = 62.8 +/- 10.1 mmol/kg wet wt, CON = 56.9 +/- 10.1). The results of this study indicate that carbohydrate ingestion does not influence the utilization of muscle glycogen during prolonged strenuous exercise.  相似文献   

10.
Exogenous carbohydrate oxidation was assessed in 6 male Category 1 and 2 cyclists who consumed CytoMax (C) or a leading sports drink (G) before and during continuous exercise (CE). C contained lactate-polymer, fructose, glucose and glucose polymer, while G contained fructose and glucose. Peak power output and VO2 on a cycle ergometer were 408+/-13 W and 67.4+/-3.2 mlO2 x kg(-1) x min(-1). Subjects performed 3 bouts of CE with C, and 2 with G at 62% VO2peak for 90 min, followed by high intensity (HI) exercise (86% VO(2)peak) to volitional fatigue. Subjects consumed 250 ml fluid immediately before (-2 min) and every 15 min of cycling. Drinks at -2 and 45 min contained 100 mg of [U-(13)C]-lactate, -glucose or -fructose. Blood, pulmonary gas samples and 13CO2 excretion were taken prior to fluid ingestion and at 5,10,15,30,45,60,75, and 90 min of CE, at the end of HI, and 15 min of recovery. HI after CE was 25% longer with C than G (6.5+/-0.8 vs. 5.2+/-1.0 min, P<0.05). 13CO2 from the -2 min lactate tracer was significantly elevated above rest at 5 min of exercise, and peaked at 15 min. 13CO2 from the -2 min glucose tracer peaked at 45 min for C and G. 13CO2 increased rapidly from the 45 min lactate dose, and by 60 min of exercise was 33% greater than glucose in C or G, and 36% greater than fructose in G. 13CO2 production following tracer fructose ingestion was greater than glucose in the first 45 minutes in C and G. Cumulative recoveries of tracer during exercise were: 92%+/-5.3% for lactate in C and 25+/-4.0% for glucose in C or G. Recoveries for fructose in C and G were 75+/-5.9% and 26+/-6.6%, respectively. Lactate was used more rapidly and to a greater extent than fructose or glucose. CytoMax significantly enhanced HI.  相似文献   

11.
This study investigated the effect of carbohydrate (CHO) ingestion on postexercise glycogen resynthesis, measured simultaneously in liver and muscle (n = 6) by (13)C magnetic resonance spectroscopy, and subsequent exercise capacity (n = 10). Subjects cycled at 70% maximal oxygen uptake for 83 +/- 8 min on six separate occasions. At the end of exercise, subjects ingested 1 g/kg body mass (BM) glucose, sucrose, or placebo (control). Resynthesis of glycogen over a 4-h period after treatment ingestion was measured on the first three occasions, and subsequent exercise capacity was measured on occasions four through six. No glycogen was resynthesized during the control trial. Liver glycogen resynthesis was evident after glucose (13 +/- 8 g) and sucrose (25 +/- 5 g) ingestion, both of which were different from control (P < 0.01). No significant differences in muscle glycogen resynthesis were found among trials. A relationship between the CHO load (g) and change in liver glycogen content (g) was evident after 30, 90, 150, and 210 min of recovery (r = 0.59-0. 79, P < 0.05). Furthermore, a modest relationship existed between change in liver glycogen content (g) and subsequent exercise capacity (r = 0.53, P < 0.05). However, no significant difference in mean exercise time was found (control: 35 +/- 5, glucose: 40 +/- 5, and sucrose: 46 +/- 6 min). Therefore, 1 g/kg BM glucose or sucrose is sufficient to initiate postexercise liver glycogen resynthesis, which contributes to subsequent exercise capacity, but not muscle glycogen resynthesis.  相似文献   

12.
The purpose of this study was to determine the separate and combined effects of exercise and insulin on the activation of phosphatidylinositol 3-kinase (PI3-kinase) and glycogen synthase in human skeletal muscle in vivo. Seven healthy men performed three trials in random order. The trials included 1) ingestion of 2 g/kg body wt carbohydrate in a 10% solution (CHO); 2) 75 min of semirecumbent cycling exercise at 75% of peak O(2) consumption; followed by 5 x 1-min maximal sprints (Ex); and 3) Ex, immediately followed by ingestion of the carbohydrate solution (ExCHO). Plasma glucose and insulin were increased (P < 0.05) at 15 and 30 (Post-15 and Post-30) min after the trial during CHO and ExCHO, although insulin was lower for ExCHO. Hyperinsulinemia during recovery in CHO and ExCHO led to an increase (P < 0.001) in PI3-kinase activity at Post-30 compared with basal, although the increase was lower (P < 0. 004) for ExCHO. Furthermore, PI3-kinase activity was suppressed (P < 0.02) immediately after exercise (Post-0) during Ex and ExCHO. Area under the insulin response curve for all trials was positively associated with PI3-kinase activity (r = 0.66, P < 0.001). Glycogen synthase activity did not increase during CHO but was increased (P < 0.05) at Post-0 and Post-30 during Ex and ExCHO. Ingestion of the drink increased (P < 0.05) carbohydrate oxidation during CHO and ExCHO, although the increase after ExCHO was lower (P < 0.05) than CHO. Carbohydrate oxidation was directly correlated with PI3-kinase activity for all trials (r = 0.63, P < 0.001). In conclusion, under resting conditions, ingestion of a carbohydrate solution led to activation of the PI3-kinase pathway and oxidation of the carbohydrate. However, when carbohydrate was ingested after intense exercise, the PI3-kinase response was attenuated and glycogen synthase activity was augmented, thus facilitating nonoxidative metabolism or storage of the carbohydrate. Activation of glycogen synthase was independent of PI3-kinase.  相似文献   

13.
The first purpose of this study was to investigate whether a glucose (GLU)+fructose (FRUC) beverage would result in a higher exogenous carbohydrate (CHO) oxidation rate and a higher fluid availability during exercise in the heat compared with an isoenergetic GLU beverage. A second aim of the study was to examine whether ingestion of GLU at a rate of 1.5 g/min during exercise in the heat would lead to a reduced muscle glycogen oxidation rate compared with ingestion of water (WAT). Eight trained male cyclists (maximal oxygen uptake: 64+/-1 ml.kg-1.min-1) cycled on three different occasions for 120 min at 50% maximum power output at an ambient temperature of 31.9+/-0.1 degrees C. Subjects received, in random order, a solution providing either 1.5 g/min of GLU, 1.0 g/min of GLU+0.5 g/min of FRUC, or WAT. Exogenous CHO oxidation during the last hour of exercise was approximately 36% higher (P<0.05) in GLU+FRUC compared with GLU, and peak oxidation rates were 1.14+/-0.05 and 0.77+/-0.08 g/min, respectively. Endogenous CHO oxidation was significantly lower (P<0.05) in GLU+FRUC compared with WAT. Muscle glycogen oxidation was not different after ingestion of GLU or WAT. Plasma deuterium enrichments were significantly higher (P<0.05) in WAT and GLU+FRUC compared with GLU. Furthermore, at 60 and 75 min of exercise, plasma deuterium enrichments were higher (P<0.05) in WAT compared with GLU+FRUC. Ingestion of GLU+FRUC during exercise in the heat resulted in higher exogenous CHO oxidation rates and fluid availability compared with ingestion of GLU and reduced endogenous CHO oxidation compared with ingestion of WAT.  相似文献   

14.
Two studies were undertaken to characterize the effects of carbohydrate ingestion on fuel/hormone response to exercise and muscle glycogen utilization during prolonged competitive exercise. In study 1, eighteen subjects were divided into three groups, matched for maximum oxygen consumption (VO2max) and blood lactate turnpoint. All subjects underwent a 3-day carbohydrate (CHO) depletion phase, followed by 3 days of CHO loading (500-600 g.day-1). During the race, the groups drank either 2% glucose (G), 8% glucose polymer (GP), or 8% fructose (F). Muscle biopsies were performed before and after the race and venous blood was sampled before and at regular intervals during the race. In study 2, eighteen subjects divided into 2 matched groups ingested either a 4% G or 10% GP solution during a 56 km race. Despite significantly greater CHO ingestion by GP and F in study 1 and by GP in study 2, blood glucose, free fatty acids and insulin concentrations, muscle glycogen utilization and running performance were not different between groups. These studies show (i) that hypoglycaemia is uncommon in athletes competing in races of up to 56 km provided they CHO-load before and ingest a minimum of 10 g CHO.h-1 during competition; (ii) that neither the amount (10 g vs 40 g.h-1) nor the type of carbohydrate (G vs GP vs F) has any effect on the extent of muscle glycogen depletion or running performance in matched subjects racing over distances up to 56 km.  相似文献   

15.
Six men were studied during exercise to exhaustion on a cycle ergometer at 73% of VO2max following ingestion of glycerol, glucose or placebo. Five of the subjects exercised for longer on the glucose trial compared to the placebo trial (p less than 0.1; 108.8 vs 95.9 min). Exercise time to exhaustion on the glucose trial was longer (p less than 0.01) than on the glycerol trial (86.0 min). No difference in performance was found between the glycerol and placebo trials. The ingestion of glucose (lg X kg-1 body weight) 45 min before exercise produced a 50% rise in blood glucose and a 3-fold rise in plasma insulin at zero min of exercise. Total carbohydrate oxidation was increased by 26% compared to placebo and none of the subjects exhibited a fall in blood glucose below 4 mmol X 1-1 during the exercise. The ingestion of glycerol (lg X kg-1 body weight) 45 min before exercise produced a 340-fold increase in blood glycerol concentration at zero min of exercise, but did not affect resting blood glucose or plasma insulin levels; blood glucose levels were up to 14% higher (p less than 0.05) in the later stages of exercise and at exhaustion compared to the placebo or glucose trials. Both glycerol and glucose feedings lowered the magnitude of the rise in plasma FFA during exercise compared to placebo. Levels of blood lactate and alanine during exercise were not different on the 3 dietary treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In an effort to determine the effects of carbohydrate (CHO) feedings immediately before exercise in both the fasted and fed state, 10 well-trained male cyclists [maximum O2 consumption (VO2 max), 4.35 +/- 0.11 l/min)] performed 45 min of cycling at 77% VO2 max followed by a 15-min performance ride on an isokinetic cycle ergometer. After a 12-h fast, subjects ingested 45 g of liquid carbohydrate (LCHO), solid carbohydrate confectionery bar (SCHO), or placebo (P) 5 min before exercise. An additional trial was performed in which a high-CHO meal (200 g) taken 4 h before exercise was combined with a confectionery bar feeding (M + SCHO) immediately before the activity. At 10 min of exercise, serum glucose values were elevated by 18 and 24% during SCHO and LCHO, respectively, compared with P. At 0 and 45 min no significant differences were observed in muscle glycogen concentration or total use between the four trials. Total work produced during the final 15 min of exercise was significantly greater (P less than 0.05) during M + SCHO (194,735 +/- 9,448 N X m), compared with all other trials and significantly greater (P less than 0.05) during LCHO and SCHO (175,204 +/- 11,780 and 176,013 +/- 10,465 N X m, respectively) than trial P (159,143 +/- 11,407 N X m). These results suggest that, under conditions when CHO stores are less than optimal, exercise performance is enhanced with the ingestion of 45 g of CHO 5 min before 1 h of intense cycling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Oxidation of combined ingestion of glucose and fructose during exercise.   总被引:1,自引:0,他引:1  
The purpose of the present study was to examine whether combined ingestion of a large amount of fructose and glucose during cycling exercise would lead to exogenous carbohydrate oxidation rates >1 g/min. Eight trained cyclists (maximal O(2) consumption: 62 +/- 3 ml x kg(-1) x min(-1)) performed four exercise trials in random order. Each trial consisted of 120 min of cycling at 50% maximum power output (63 +/- 2% maximal O(2) consumption), while subjects received a solution providing either 1.2 g/min of glucose (Med-Glu), 1.8 g/min of glucose (High-Glu), 0.6 g/min of fructose + 1.2 g/min of glucose (Fruc+Glu), or water. The ingested fructose was labeled with [U-(13)C]fructose, and the ingested glucose was labeled with [U-(14)C]glucose. Peak exogenous carbohydrate oxidation rates were approximately 55% higher (P < 0.001) in Fruc+Glu (1.26 +/- 0.07 g/min) compared with Med-Glu and High-Glu (0.80 +/- 0.04 and 0.83 +/- 0.05 g/min, respectively). Furthermore, the average exogenous carbohydrate oxidation rates over the 60- to 120-min exercise period were higher (P < 0.001) in Fruc+Glu compared with Med-Glu and High-Glu (1.16 +/- 0.06, 0.75 +/- 0.04, and 0.75 +/- 0.04 g/min, respectively). There was a trend toward a lower endogenous carbohydrate oxidation in Fruc+Glu compared with the other two carbohydrate trials, but this failed to reach statistical significance (P = 0.075). The present results demonstrate that, when fructose and glucose are ingested simultaneously at high rates during cycling exercise, exogenous carbohydrate oxidation rates can reach peak values of approximately 1.3 g/min.  相似文献   

18.
This study examined the question of whether increases in plasma volume (hypervolemia) induced through exercise affect muscle substrate utilization and muscle bioenergetics during prolonged heavy effort. Six untrained males (19-24 yr) were studied before and after 3 consecutive days of cycling (2 h/day at 65% of peak O2 consumption) performed in a cool environment (22-23 degrees C, 25-35% relative humidity). This protocol resulted in a 21.2% increase in plasma volume (P less than 0.05). During exercise no difference was found in the blood concentrations of glucose, lactate, and plasma free fatty acids at either 30, 60, 90, or 120 min of exercise before and after the hypervolemia. In contrast, blood alanine was higher (P less than 0.05) during both rest and exercise with hypervolemia. Measurement of muscle samples extracted by biopsy from the vastus lateralis muscle at rest and at 60 and 120 min of exercise indicated no effect of training on high-energy phosphate metabolism (ATP, ADP, creatine phosphate, creatine) or on selected glycolytic intermediate concentrations (glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, lactate). In contrast, training resulted in higher (P less than 0.05) muscle glucose and muscle glycogen concentrations. These changes were accompanied by blunting of the exercise-induced increase (P less than 0.05) in both blood epinephrine and norepinephrine concentrations. Plasma glucagon and serum insulin were not affected by the training. The results indicate that exercise-induced hypervolemia did not alter muscle energy homeostasis. The reduction in muscle glycogen utilization appears to be an early adaptive response to training mediated either by an increase in blood glucose utilization or a decrease in anaerobic glycolysis.  相似文献   

19.
To study the effect of menstrual cycle phase and carbohydrate ingestion on glucose kinetics and exercise performance, eight healthy, moderately trained, eumenorrheic women cycled at 70% of peak O(2) consumption for 2 h and then performed a 4 kJ/kg body wt time trial. A control (C) and a glucose ingestion (G) trial were completed during the follicular (F) and luteal (L) phases of the menstrual cycle. Plasma substrate concentrations were similar before the commencement of exercise. Glucose rates of appearance and disappearance were higher (P < 0.05) during the 2nd h of exercise in FC than in LC. The percent contribution of carbohydrate to total energy expenditure was greater in FC than in LC, and subjects performed better (13%, P < 0.05) in FC. Performance improved (19% and 26% in FG and LG compared with FC and LC, respectively, P < 0.05) with the ingestion of glucose throughout exercise. These data demonstrate that substrate metabolism and exercise performance are influenced by the menstrual cycle phase, but ingestion of glucose minimizes these effects.  相似文献   

20.
The aim of the present study was to test the hypothesis that the oxidation rate of ingested carbohydrate (CHO) is impaired during exercise in the heat compared with a cool environment. Nine trained cyclists (maximal oxygen consumption 65 +/- 1 ml x kg body wt(-1) x min(-1)) exercised on two different occasions for 90 min at 55% maximum power ouptput at an ambient temperature of either 16.4 +/- 0.2 degrees C (cool trial) or 35.4 +/- 0.1 degrees C (heat trial). Subjects received 8% glucose solutions that were enriched with [U-13C]glucose for measurements of exogenous glucose, plasma glucose, liver-derived glucose and muscle glycogen oxidation. Exogenous glucose oxidation during the final 30 min of exercise was significantly (P < 0.05) lower in the heat compared with the cool trial (0.76 +/- 0.06 vs. 0.84 +/- 0.05 g/min). Muscle glycogen oxidation during the final 30 min of exercise was increased by 25% in the heat (2.07 +/- 0.16 vs. 1.66 +/- 0.09 g/min; P < 0.05), and liver-derived glucose oxidation was not different. There was a trend toward a higher total CHO oxidation and a lower plasma glucose oxidation in the heat although this did not reach statistical significance (P = 0.087 and P = 0.082, respectively). These results demonstrate that the oxidation rate of ingested CHO is reduced and muscle glycogen utilization is increased during exercise in the heat compared with a cool environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号