首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmonella Typhimurium combats phagocytic superoxide by producing the periplasmic superoxide dismutase, SodCI. The homologous protein, SodCII, is also produced during infection, but does not contribute to virulence. The proteins physically differ in that SodCI is dimeric, protease resistant and non-covalently tethered within the periplasm. Conversely, SodCII is a protease-sensitive monomer that is released normally from the periplasm by osmotic shock. To identify which properties correlate with virulence, we constructed over 20 enzymatically functional hybrid SodC proteins and assayed them for protease susceptibility, release by osmotic shock, multimerization and affinity for metal cofactors. Protease susceptibility maps to the C-terminus of SodCII, while SodCI residues 120-131 are required for tethering. A protease-resistant SodCII hybrid was able to substitute for SodCI during infection. Interestingly, a tethered but protease-sensitive SodCII hybrid was also able to confer protection. Thus, either tethering or protease resistance is sufficient for a SodC to function during infection. These results support our model that in the macrophage, the outer membrane of Salmonella is partially disrupted by antimicrobial peptides. Periplasmic proteins, including SodCII, are released and/or phagocytic proteases gain access. SodCI is both tethered within the periplasm and protease resistant, thereby surviving to detoxify superoxide.  相似文献   

2.
Salmonellae survive and propagate in macrophages to cause serious systemic disease. Periplasmic superoxide dismutase plays a critical role in this survival by combating phagocytic superoxide. Salmonella Typhimurium strain 14028 produces two periplasmic superoxide dismutases: SodCI and SodCII. Although both proteins are produced during infection, only SodCI is functional in the macrophage phagosome. We have previously shown that SodCI, relative to SodCII, is both protease resistant and tethered within the periplasm and that either of these properties is sufficient to allow a SodC to protect against phagocytic superoxide. Tethering is defined as remaining cell‐associated after osmotic shock or treatment with cationic antimicrobial peptides. Here we show that SodCI non‐covalently binds peptidoglycan. SodCI binds to Salmonella and Bacillus peptidoglycan, but not peptidoglycan from Staphylococcus. Moreover, binding can be inhibited by a diaminopimelic acid containing tripeptide, but not a lysine containing tripeptide, showing that the protein recognizes the peptide portion of the peptidoglycan. Replacing nine amino acids in SodCII with the corresponding residues from SodCI confers tethering, partially delineating an apparently novel peptidoglycan binding domain. These changes in sequence increase the affinity of SodCII for peptidoglycan fragments to match that of SodCI and allow the now tethered SodCII to function during infection.  相似文献   

3.
Salmonella enterica serovar Typhimurium produces two Cu/Zn cofactored periplasmic superoxide dismutases, SodCI and SodCII. While mutations in sodCI attenuate virulence eightfold, loss of SodCII does not confer a virulence phenotype, nor does it enhance the defect observed in a sodCI background. Despite this in vivo phenotype, SodCI and SodCII are expressed at similar levels in vitro during the stationary phase of growth. By exchanging the open reading frames of sodCI and sodCII, we found that SodCI contributes to virulence when placed under the control of the sodCII promoter. In contrast, SodCII does not contribute to virulence even when expressed from the sodCI promoter. Thus, the disparity in virulence phenotypes is due primarily to some physical difference between the two enzymes. In an attempt to identify the unique property of SodCI, we have tested factors that might affect enzyme activity inside a phagosome. We found no significant difference between SodCI and SodCII in their resistance to acid, resistance to hydrogen peroxide, or ability to obtain copper in a copper-limiting environment. Both enzymes are synthesized as apoenzymes in the absence of copper and can be fully remetallated when copper is added. The one striking difference that we noted is that, whereas SodCII is released normally by an osmotic shock, SodCI is "tethered" within the periplasm by an apparently noncovalent interaction. We propose that this novel property of SodCI is crucial to its ability to contribute to virulence in serovar Typhimurium.  相似文献   

4.
5.
6.
Most Salmonella enterica serovars produce two periplasmic [Cu,Zn] superoxide dismutases, SodCI, which is prophage encoded, and SodCII, encoded by a conserved chromosomal gene. Both enzymes were proposed to enhance Salmonella virulence by protecting bacteria against products of macrophage oxidative burst. However, we previously found SodCI, but not SodCII, to play a role during mouse infection by S. enterica serovar Typhimurium. Here we have extended these findings to another serovar of epidemiological relevance: sv Enteritidis. In both serovars, the dominant role of SodCI in virulence correlates with its higher levels in bacteria proliferating in mouse tissues, relative to SodCII. To analyze the basis of these differences, the coding sequences of sodCI and sodCII genes were exchanged with the reciprocal 5'-regions (in serovar Typhimurium). The accumulation patterns of the two proteins in vivo were reversed as a result, indicating that the regulatory determinants lie entirely within the regions upstream from the initiation codon. In the construct with the sodCI gene fused to the sodCII 5'-region, SodCI contribution to virulence was reduced but remained significant. Thus, both, high-level expression and some unidentified qualities of the enzyme participate in the phenotypic dominance of SodCI over SodCII in Salmonella pathogenicity.  相似文献   

7.
8.
Most Salmonella enterica strains have two peri-plasmic [Cu, Zn] superoxide dismutases, SodCI and SodCII, encoded by prophage and chromosomal genes respectively. Both enzymes are thought to play a role in Salmonella pathogenicity by intercepting reactive oxygen species produced by the host's innate immune response. To examine the apparent redundancy, we have compared the levels of epitope-tagged SodCI and SodCII proteins in bacteria growing in vitro, as well as inside tissue culture cells and in mouse tissues. Concomitantly, we have measured the abilities of mutants of either or both sodC genes to proliferate in infected mice in competition assays. Our results show a striking variation in the relative abundance of the two proteins in different environments. In vitro, both proteins accumulate when bacteria enter stationary phase; however, the increase is much sharper and conspicuous for SodCII than for SodCI. In contrast, SodCI vastly predominates in intracellular bacteria where SodCII levels are negligible. In agreement with these findings, most, if not all, of the contribution of [Cu, Zn] superoxide dismutase activity to murine salmonellosis can be ascribed to the SodCI protein. Overall the results of this work suggest that the duplicate sodC genes of Salmonella have evolved to respond to different sets of conditions encountered by bacteria inside the host and in the environment.  相似文献   

9.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu, Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.  相似文献   

10.
The Gifsy-2 temperate bacteriophage of Salmonella enterica serovar Typhimurium contributes significantly to the pathogenicity of strains that carry it as a prophage. Previous studies have shown that Gifsy-2 encodes SodCI, a periplasmic Cu/Zn superoxide dismutase, and at least one additional virulence factor. Gifsy-2 encodes a Salmonella pathogenicity island 2 type III secreted effector protein. Sequence analysis of the Gifsy-2 genome also identifies several open reading frames with homology to those of known virulence genes. However, we found that null mutations in these genes did not individually have a significant effect on the ability of S. enterica serovar Typhimurium to establish a systemic infection in mice. Using deletion analysis, we have identified a gene, gtgE, which is necessary for the full virulence of S. enterica serovar Typhimurium Gifsy-2 lysogens. Together, GtgE and SodCI account for the contribution of Gifsy-2 to S. enterica serovar Typhimurium virulence in the murine model.  相似文献   

11.
12.
Copper/zinc-cofactored superoxide dismutase ([Cu,Zn]-SOD) has been found in the periplasm of many bacterial species but its biological function is unknown. Here we report the cloning and characterization of sodC , encoding [Cu,Zn]-SOD, from Salmonella typhimurium . The predicted protein sequence shows only 58% identity to Escherichia coli SodC, and from this its chromosomal location and its immediate proximity to a phage gene, sodC , in Salmonella is speculated to have been acquired by bacteriophage-mediated horizontal transfer from an unknown donor. A sodC mutant of S . typhimurium was unimpaired on aerobic growth in rich medium but showed enhanced sensitivity in vitro to the microbicidal action of superoxide. S . typhimurium , S . choleraesuis and S . dublin sodC mutants showed reduced lethality in a mouse model of oral infection and persisted in significantly lower numbers in livers and spleens after intraperitoneal infection, suggesting that [Cu,Zn]-SOD plays a role in pathogenicity, protecting Salmonella against oxygen radical-mediated host defences. There was, however, no observable difference compared with wild type in the interaction of sodC mutants with porcine pleural, mouse peritoneal or J774 macrophages in vitro , perhaps reflecting the hierarchical capacity of different macrophage lines to kill Salmonella , the most efficient overwhelming the proposed protective effect of periplasmic SOD.  相似文献   

13.
Many gram-negative bacteria harbor a copper/zinc-containing superoxide dismutase (CuZnSOD) in their periplasms. In pathogenic bacteria, one role of this enzyme may be to protect periplasmic biomolecules from superoxide that is released by host phagocytic cells. However, the enzyme is also present in many nonpathogens and/or free-living bacteria, including Escherichia coli. In this study we were able to detect superoxide being released into the medium from growing cultures of E. coli. Exponential-phase cells do not normally synthesize CuZnSOD, which is specifically induced in stationary phase. However, the engineered expression of CuZnSOD in growing cells eliminated superoxide release, confirming that this superoxide was formed within the periplasm. The rate of periplasmic superoxide production was surprisingly high and approximated the estimated rate of cytoplasmic superoxide formation when both were normalized to the volume of the compartment. The rate increased in proportion to oxygen concentration, suggesting that the superoxide is generated by the adventitious oxidation of an electron carrier. Mutations that eliminated menaquinone synthesis eradicated the superoxide formation, while mutations in genes encoding respiratory complexes affected it only insofar as they are likely to affect the redox state of menaquinone. We infer that the adventitious autoxidation of dihydromenaquinone in the cytoplasmic membrane releases a steady flux of superoxide into the periplasm of E. coli. This endogenous superoxide may create oxidative stress in that compartment and be a primary substrate of CuZnSOD.  相似文献   

14.
We have investigated the availability of zinc in the periplasmic space of Escherichia coli using a mutant Cu,Zn superoxide dismutase whose dimerization is triggered by zinc binding. This mutant enzyme accumulates in the monomeric form when wild type cells are grown in minimal medium, but assembles in the dimeric form when it is produced in the same medium by a mutant strain lacking the periplasmic zinc metallochaperone ZnuA. These results indicate that periplasmic zinc-containing proteins compete for metal binding when bacteria grow in environments where this element is present in traces. The effective ZnuA ability to sequester the available zinc ions from the periplasm suggests that zinc-containing cytoplasmic proteins are more important for bacterial viability than the periplasmic ones.  相似文献   

15.
Several bacteria possess periplasmic Cu,Zn superoxide dismutases which can confer protection from extracellular reactive oxygen species. Thus, deletion of the sodC1 gene reduces Salmonella enterica serovar Typhimurium ability to colonize the spleens of wild type mice, but enhances virulence in p47phox mutant mice. To look into the role of periplamic Cu,Zn superoxide dismutase and into possible additive effects of the ferritin-like Dps protein involved in hydrogen peroxide detoxification, we have analyzed bacterial survival in response to extracellular sources of superoxide and/or hydrogen peroxide. Exposure to extracellular superoxide of Salmonella Typhimurium mutant strains lacking the sodC1 and sodC2 genes and/or the dps gene does not cause direct killing of bacteria, indicating that extracellular superoxide is poorly bactericidal. In contrast, all mutant strains display a sharp hydrogen peroxide-dependent loss of viability, the dps,sodC1,sodC2 mutant being less resistant than the dps or the sodC1,sodC2 mutants. These findings suggest that the role of Cu,Zn superoxide dismutase in bacteria is to remove rapidly superoxide from the periplasm to prevent its reaction with other reactive molecules. Moreover, the nearly additive effect of the sodC and dps mutations suggests that localization of antioxidant enzymes in different cellular compartments is required for bacterial resistance to extracytoplasmic oxidative attack.  相似文献   

16.
Aeromonas salmonicida containing the cloned gene for proaerolysin secretes the protein via the type II secretory pathway. Here we show that altering a region near the beginning of aerA led to a dramatic increase in the amount of proaerolysin that was produced and that a large amount of the protein was cell associated. All of the cell-associated protein had crossed the cytoplasmic membrane, because the signal sequence had been removed, and all of it was accessible to processing by trypsin during osmotic shock. Enlargement of the periplasm was observed by electron microscopy in overproducing cells, likely caused by the osmotic effect of the very large concentrations of accumulated proaerolysin. Immunogold electron microscopy localized nearly all of the proaerolysin in the enlarged periplasm; however, only half of the protoxin was released from the cells by osmotic shocking. Cross-linking studies showed that this fraction contained normal dimeric proaerolysin but that proaerolysin in the fraction that was not shockable had not dimerized, although it appeared to be correctly folded. Both periplasmic fractions were secreted by the cells; however, the nonshockable fraction was secreted much more slowly than the shockable fraction. We estimated a rate for maximal secretion of proaerolysin from the bacteria that was much lower than the rates that have been estimated for inner membrane transit, which suggests that transit across the outer membrane is rate limiting and may account for the periplasmic accumulation of the protein. Finally, we show that overproduction of proaerolysin inhibited the release of the protease that is secreted by A. salmonicida.  相似文献   

17.
All of the superoxide dismutase isozymes of Escherichia coli have been shown to occur in the cell matrix, and none have been found in the periplasm. This was the case with both E. coli B and E. coli K-12, whether grown on a low phosphate medium or on a Trypticase soy-yeast extract medium. Alkaline phosphatase was used as a marker of the periplasm; adenosine deaminase and glucose 6-phosphate dehydrogenase were used as matrix markers, and consistent results were obtained by osmotic shock, spheroplast formation, and use of a diazonium salt that penetrates the periplasm but cannot cross the plasma membrane. A previous report that the iron-containing superoxide dismutase of E. coli is a periplasmic enzyme is now seen to have been in error.  相似文献   

18.
Abstract The monomeric or dimeric nature of the K99 periplasmic chaperone FanE was examined. The gene encoding FanE was subcloned in a pINIIIA1 derivative expression vector. A complementation experiment showed that the subcloned FanE was biologically functional. The protein was purified from the periplasm of cells harbouring the constructed plasmid. Automated Edman degradation experiments confirmed the predicted N-terminal amino acid sequence of FanE. A polyclonal mouse antiserum was raised against the FanE chaperone. The monomeric or oligomeric nature of the protein in the periplasm was studied by gel filtration, immunoblotting and chemical cross-linking experiments. The results indicated that FanE is a monomeric protein, in contrast to the K88 periplasmic chaperone.  相似文献   

19.
Complement activity in mammalian serum is fundamentally based on three homologous components C3b, C4b and C5. During systemic infection, the gastrointestinal pathogen Salmonella enterica disseminates within host phagocytic cells but also extracellularly. Consequently, systemic Salmonella transiently confronts the complement system. We show here that the surface protease PgtE of S. enterica proteolytically cleaves C3b, C4b and C5 and that the expression of PgtE enhances bacterial resistance to human serum. Degradation of C3b was further enhanced by PgtE-mediated plasminogen activation.  相似文献   

20.
Copper ions are essential but also very toxic. Copper resistance in bacteria is based on export of the toxic ion, oxidation from Cu(I) to Cu(II), and sequestration by copper‐binding metal chaperones, which deliver copper ions to efflux systems or metal‐binding sites of copper‐requiring proteins. In their publication in this issue, Osman et al. ( 2013 ) demonstrate how tightly copper resistance, homeostasis and delivery pathways are interwoven in Salmonella enterica sv. Typhimurium. Copper is transported from the cytoplasm by the two P‐type ATPases CopA and GolT to the periplasm and transferred to SodCII by CueP, a periplasmic copper chaperone. When copper levels are higher, SodCII is also able to bind copper without the help of CueP. This scheme raises the question as to why copper ions present in the growth medium have to make the detour through the cytoplasm. The data presented in the publication by Osman et al. ( 2013 ) change our view of the cell biology of copper in enterobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号