首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Folding determinants of LDL receptor type A modules.   总被引:1,自引:0,他引:1  
V Koduri  S C Blacklow 《Biochemistry》2001,40(43):12801-12807
To investigate how three disulfide bonds and coordination of a calcium ion cooperate to specify the structure of an LDL-A module, we studied the interdependence of disulfide bond formation and calcium coordination in the folding of ligand-binding module 5 of the LDL receptor (LR5). In variants of LR5 containing only a single pair of cysteines normally disulfide-bonded in the native polypeptide, the addition of calcium does not alter the effective concentration of one cysteine for the other. LR5 only exhibits a calcium-dependent preference for formation of native disulfide bonds and detectable calcium-induced changes in structure when the two C-terminal disulfide bonds are present. Furthermore, when the conformation of this two-disulfide variant of LR5 is probed by NMR in the presence of calcium, only the C-terminal lobe of the module, which contains the calcium coordination site, acquires a near-native conformation; the N-terminal lobe appears to be disordered. These findings contrast with studies of other model proteins, like BPTI, in which formation of a single disulfide bond is sufficient to drive the entire domain to acquire a stable, nativelike fold.  相似文献   

2.
One common feature of the more than 1,000 complement-type repeats (or low density lipoprotein (LDL)-A modules) found in LDL receptor and the other members of the LDL receptor superfamily is a cluster of five highly conserved acidic residues in the C-terminal region, DXXXDXXDXXDE. However, the role of the third conserved aspartate of these LDL-A modules in protein folding and ligand recognition has not been elucidated. In this report, using a model LDL-A module and several experimental approaches, we demonstrate that this acidic residue, like the other four conserved acidic residues, is involved in calcium-dependent protein folding. These results suggest an alternative calcium coordination conformation for the LDL-A modules. The proposed model provides a plausible explanation for the conservation of this acidic residue among the LDL-A modules. Furthermore, the model can explain why mutations of this residue in human LDL receptor cause familial hypercholesterolemia.  相似文献   

3.
Solution structure of the sixth LDL-A module of the LDL receptor   总被引:5,自引:0,他引:5  
North CL  Blacklow SC 《Biochemistry》2000,39(10):2564-2571
The low-density lipoprotein receptor (LDLR) is the primary mechanism for uptake of plasma cholesterol into cells and serves as a prototype for an entire class of cell surface receptors. The amino-terminal domain of the receptor consists of seven LDL-A modules; the third through the seventh modules all contribute to the binding of low-density lipoproteins (LDLs). Here, we present the NMR solution structure of the sixth LDL-A module (LR6) from the ligand binding domain of the LDLR. This module, which has little recognizable secondary structure, retains the essential structural features observed in the crystal structure of LDL-A module five (LR5) of the LDLR. Three disulfide bonds, a pair of buried residues forming a hydrophobic "mini-core", and a calcium-binding site that serves to organize the C-terminal lobe of the module all occupy positions in LR6 similar to those observed in LR5. The striking presence of a conserved patch of negative surface electrostatic potential among LDL-A modules of known structure suggests that ligand recognition by these repeats is likely to be mediated in part by electrostatic complementarity of receptor and ligand. Two variants of LR6, identified originally as familial hypercholesterolemia (FH) mutations, have been investigated for their ability to form native disulfide bonds under conditions that permit disulfide exchange. The first, E219K, lies near the amino-terminal end of LR6, whereas the second, D245E, alters one of the aspartate side chains that directly coordinate the bound calcium ion. After equilibration at physiologic calcium concentrations, neither E219K nor D245E folds to a unique disulfide isomer, indicating that FH mutations both within and distant from the calcium-binding site give rise to protein-folding defects.  相似文献   

4.
We have isolated 64 different missense mutations at 36 out of 53 residue positions in the Arc repressor of bacteriophage P22. Many of the mutant proteins with substitutions in the C-terminal 40 residues of Arc have reduced intracellular levels and probably have altered structures or stabilities. Mutations in the N-terminal ten residues of Arc cause large decreases in operator DNA binding affinity without affecting the ability of Arc to fold into a stable three-dimensional structure. We argue that these N-terminal residues are important for operator recognition but that they are not part of a conventional helix-turn-helix DNA binding structure. These results suggest that Arc may use a new mechanism for sequence specific DNA binding.  相似文献   

5.
North CL  Blacklow SC 《Biochemistry》2000,39(43):13127-13135
Mutations at conserved sites within the ligand-binding LDL-A modules of the LDL receptor cause the genetic disease familial hypercholesterolemia (FH), and several of these FH mutations in modules five and six prevent the isolated single modules from folding properly to a nativelike three-dimensional structure. Because LDL-A modules occur as a series of contiguous repeats in the LDLR and related proteins, we investigated the impact of two FH mutations in LDL-A module five (D203G and D206E) and two mutations in module six (E219K and D245E) in the context of the covalently connected module five-six pair. HPLC chromatography of the products formed under conditions that efficiently refold the native module five-six pair demonstrate that, for each mutation, a folding defect persists in the module pair. NMR spectroscopy and calcium affinity measurements of the ensemble of misfolded products demonstrate that the unaltered module of each pair can fold to its native structure regardless of the range of misfolded conformations adopted by its mutated neighbor. These findings lend additional support to a model in which individual LDL-A modules of the LDL receptor act as independent structural elements.  相似文献   

6.
Understanding how each residue position contributes to protein function has been a long-standing goal in protein science. Substitution studies have historically focused on conserved protein positions. However, substitutions of nonconserved positions can also modify function. Indeed, we recently identified nonconserved positions that have large substitution effects in human liver pyruvate kinase (hLPYK), including altered allosteric coupling. To facilitate a comparison of which characteristics determine when a nonconserved position does vs does not contribute to function, the goal of the current work was to identify neutral positions in hLPYK. However, existing hLPYK data showed that three features commonly associated with neutral positions—high sequence entropy, high surface exposure, and alanine scanning—lacked the sensitivity needed to guide experimental studies. We used multiple evolutionary patterns identified in a sequence alignment of the PYK family to identify which positions were least patterned, reasoning that these were most likely to be neutral. Nine positions were tested with a total of 117 amino acid substitutions. Although exploring all potential functions is not feasible for any protein, five parameters associated with substrate/effector affinities and allosteric coupling were measured for hLPYK variants. For each position, the aggregate functional outcomes of all variants were used to quantify a “neutrality” score. Three positions showed perfect neutral scores for all five parameters. Furthermore, the nine positions showed larger neutral scores than 17 positions located near allosteric binding sites. Thus, our strategy successfully enriched the dataset for positions with neutral and modest substitutions.  相似文献   

7.
8.
Beck C  Cranz S  Solmaz M  Roth M  Jeltsch A 《Biochemistry》2001,40(37):10956-10965
The EcoRV DNA-(adenine-N6)-methyltransferase (MTase) recognizes GATATC sequences and modifies the first adenine residue within this site. Parts of its DNA interface show high sequence homology to DNA MTases of the dam family which recognize and modify GATC sequences. A phylogenetic analysis of M.EcoRV and dam-MTases suggests that EcoRV arose in evolution from a primordial dam-MTase in agreement to the finding that M.EcoRV also methylates GATC sites albeit at a strongly reduced rate. GATCTC sites that deviate in only one position from the EcoRV sequence are preferred over general dam sites. We have investigated by site-directed mutagenesis the function of 17 conserved and nonconserved residues within three loops flanking the DNA binding cleft of M.EcoRV. M.EcoRV contacts the GATATC sequence with two highly cooperative recognition modules. The contacts to the GAT-part of the recognition sequence are formed by residues conserved between dam MTases and M.EcoRV. Mutations at these positions lead to an increase in the discrimination between GATATC and GATC substrates. Our data show that the change in sequence specificity from dam (GATC) to EcoRV (GATATC) was accompanied by the generation of a second recognition module that contacts the second half of the target sequence. The new DNA contacts are formed by residues from all three loops that are not conserved between M.EcoRV and dam MTases. Mutagenesis at important residues within this module leads to variants that show a decreased ability to recognize the TC-part of the GATATC sequence.  相似文献   

9.
V Bruss 《Journal of virology》1997,71(12):9350-9357
Envelopment of the hepatitis B virus (HBV) nucleocapsid depends on the large envelope protein L, which is expressed as a transmembrane polypeptide at the endoplasmic reticulum membrane. Previous studies demonstrated that the cytosolic exposure of the N-terminal pre-S domain (174 amino acids) of L was required for virion formation. N-terminal truncations of L up to Arg 103 were tolerated. To map sites in the remaining C-terminal part of pre-S important for virion morphogenesis, a series of 11 L mutants with linker substitutions between Asn 98 and Pro 171 was generated. The mutants formed stable proteins and were secreted in transfected cell cultures, probably as components of subviral hepatitis B surface antigen particles. All four constructs with mutations between Asn 98 and Thr 125 were unable to complement in trans the block in virion formation of an L-negative HBV genome in cotransfected HuH7 cells. These mutants had a transdominant negative effect on virus yield in cotransfections with the wild-type HBV genome. In contrast, all seven mutants with substitutions downstream of Ser 124 were able to envelop the nucleocapsid and to secrete HBV. The sequence between Arg 103 and Ser 124 is highly conserved among different HBV isolates and also between HBV and the woodchuck hepatitis virus. Point mutations in this region introducing alanine residues at conserved positions blocked virion formation, in contrast to mutations at nonconserved residues. These results demonstrate that the pre-S sequence between Arg 103 and Ser 124 has an important function in HBV morphogenesis.  相似文献   

10.
ActR-IIA, ActR-IIB, and BMPR-II are low-affinity type II receptors that bind bone morphogenetic proteins (BMPs) in the same overall manner. The binding of BMPs by ActR-IIs has been analyzed structurally and functionally, but no detailed analysis of BMPR-II has been reported. The objective of this study was to determine ligand-binding epitopes and specificity determinants in two regions, the hydrophobic patch and the A-loop of the BMPR-II extracellular domain (ECD). A series of alanine-substituted variants was generated using a recently published X-ray structure of the unliganded form of the ovine BMPR-II ECD as a guide. These variants were characterized using one-dimensional NMR and functional activity assays with BMP-2, BMP-7 and GDF-5 as ligands. The results showed that alanine substitutions of conserved residues W85 and Y113 within the hydrophobic patch of the ECD differentially perturbed BMP ligand binding without disrupting receptor folding, suggesting that they are critical determinants for ligand binding and ligand specificity. Our results further revealed that the nonconserved residue L69 in the hydrophobic patch contributes to ligand-binding activity and specificity. Mutations of several residues within the A-loop resulted in minimal effects on the binding of the different BMP ligands. Overall, these observations identify several amino acid residues that play different roles in BMPR-II and ActR-II and thereby enable BMPR-II and ActR-IIs to bind different subclasses of BMP ligands.  相似文献   

11.
12.
Megalin, an approx. 600 kDa transmembrane glycoprotein that acts as multi-ligand transporter, is a member of the low density lipoprotein receptor gene family. Several cysteine-rich repeats, each consisting of about 40 residues, are responsible for the multispecific binding of ligands. The solution structure of the twelfth cysteine-rich ligand-binding repeat with class A motif found in megalin features two short beta-strands and two helical turns, yielding the typical fold with a I-III, II-V and IV-VI disulfide bridge connectivity pattern and a calcium coordination site at the C-terminal end. The resulting differences in electrostatic surface potential compared to other ligand-binding modules of this gene family, however, may be responsible for the functional divergence.  相似文献   

13.
The ligand binding module five (LA5) of the low density lipoprotein receptor is a small, single-domain protein of 40 residues and three disulfide bonds with a calcium binding motif that is essential for its structure and function. Several mutations in LA5 have been reported to cause familial hypercholesterolemia by impairing a proper folding of the module. The current study reports the oxidative folding and reductive unfolding pathways of wild type and mutant LA5 modules through kinetic and structural analysis of the trapped intermediates. Wild type LA5 folding involves an initial phase of nonspecific packing where the sequential oxidation of its cysteines gives rise to complex equilibrated populations of intermediates. In the presence of calcium, the attainment of a coordination-competent conformation becomes the rate-limiting step of folding while binding of the ion funnels both thermodynamically and kinetically the folding reaction toward the native state. In the absence of calcium, a scrambled isomer (termed Xa) constitutes the global free energy minimum of the folding process. Xa and the native form are stable, inter-convertible species whose relative populations at equilibrium appear displaced in disease-linked mutants toward the scrambled form. Because stable scrambled isomers such as Xa avoid the exposition of reactive cysteines in misfolded modules, they might constitute a strategy to prevent wrong interactions with other domains during folding of the receptor. Comparison of the folding pathways of wild type and mutant LA5 provides the molecular basis to understand how LA modules fold into a functional conformation or upon mutation misfold and lead to disease.  相似文献   

14.
The stressosome is a 1.8-MDa cytoplasmic complex that conveys environmental signals to the σ(B) stress factor of Bacillus subtilis. A functionally irreducible complex contains multiple copies of three proteins: the RsbRA coantagonist, RsbS antagonist, and RsbT serine-threonine kinase. Homologues of these proteins are coencoded in different genome contexts in diverse bacteria, forming a versatile sensing and transmission module called RST after its common constituents. However, the signaling pathway within the stressosome itself is not well defined. The N-terminal, nonheme globin domains of RsbRA project from the stressosome and are presumed to channel sensory input to the C-terminal STAS domains that form the complex core. A conserved, 13-residue α-helical linker connects these domains. We probed the in vivo role of the linker using alanine scanning mutagenesis, assaying stressosome output in B. subtilis via a σ(B)-dependent reporter fusion. Substitutions at four conserved residues increased output 4- to 30-fold in unstressed cells, whereas substitutions at four nonconserved residues significantly decreased output. The periodicity of these effects supports a model in which RsbRA functions as a dimer in vivo, with the linkers forming parallel paired helices via a conserved interface. The periodicity further suggests that the opposite, nonconserved faces make additional contacts important for efficient stressosome operation. These results establish that the linker influences stressosome output under steady-state conditions. However, the stress response phenotypes of representative linker substitutions provide less support for the notion that the N-terminal globin domain senses acute environmental challenge and transmits this information via the linker helix.  相似文献   

15.
Fragment complementation has been used to delineate the essential recognition elements for stable folding in Src homology 2 (SH2) domains by using NMR spectroscopy, alanine scanning, and surface plasmon resonance. The unfolded 9-kD and 5-kD peptide fragments formed by limited proteolytic digestion of the N-terminal SH2 domain from the p85alpha subunit of phosphatidylinositol 3'-kinase fold into an active native-like structure on interaction with one another. The corresponding 5-kD fragment of the homologous Src protein, however, was not capable of structurally complementing the p85 9-kD fragment, indicating that fragment complementation among these SH2 domains is sensitive to the sequence differences between the Src and p85 domains. Partial complementation and folding activity could be recovered with hybrid sequences of these SH2 domains. Complete alanine scanning of the 5-kD p85 fragment was used to identify the sequence recognition elements required for complex formation. The alanine substitutions in the p85 5-kD fragment that abolished binding affinity with the cognate 9-kD fragment correlate well with highly conserved residues among SH2 domains that are either integrally involved in core packing or found at the interface between fragments. Surprisingly, however, mutation of a nonconserved surface-exposed aspartic acid to alanine was found to have a significant effect on complementation. A single additional mutation of arginine to aspartic acid allowed for recovery of native structure and increased the thermal stability of the designed Src-p85 chimera by 18 degrees C. This modification appears to relieve an unfavorable surface electrostatic interaction, demonstrating the importance of surface charge interactions in protein stability.  相似文献   

16.
Three-dimensional models of the five functional modules in human protein kinase Cα (PKCα) have been generated on the basis of known related structures. The catalytic region at the C-terminus of the sequence and the N-terminal auto-inhibitory pseudo-substrate have been modeled using the crystal structure complex of cAMP-dependent protein kinese (cAPK) and PKI peptide. While the N-terminal helix of the catalytic region of PKCα is predicted to be in a different location compared with cAPK, the C-terminal extension is modeled like that in the cAPK. The predicted permissive phosphorylation site of PKCα, Thr 497, is found to be entirely consistent with the mutagenesis studies. Basic Lys and Arg residues in the pseudo-substrate make several specific interactions with acidic residues in the catalytic region and may interact with the permissive phosphorylation site. Models of the two zinc-binding modules of PKCα are based on nuclear magnetic resonance and crystal structures of such modules in other PKC isoforms while the calcium phospholipid binding module (C2) is based on the crystal structure of a repeating unit in synaptotagmin I. Phorbol ester binding regions in zinc-binding modules and the calcium binding region in the C2 domain are similar to those in the basis structures. A hypothetical model of the relative positions of all five modules has the putative lipid binding ends of the C2 and the two zinc-binding domains pointing in the same direction and may serve as a basis for further experiments. © 1996 Wiley-Liss, Inc.  相似文献   

17.
《Free radical research》2013,47(1):349-361
Copper/zinc superoxide dismutase is typically an enzyme of eukaryotes. The presence of the enzyme in the ponyfish symbiont Photobocterium leiognothi and some free living bacteria does not have an immediate explanation. Amino acid sequence alignment of 19 Cu/Zn superoxide disrnutases shows 21 invariant residues in key positions related to maintenance of the β-barrel fold, the active site structure including the electrostatic channel loop, and dimer contacts. Nineteen other residues are invariant in 18 of the 19 sequences. Thirteen of these nearly invariant residues show substitutions in Photobocterium Cu/Zn superoxide dismutase. Copper/zinc superoxide disrnutase from the trematode Schisiosoma mansoni shows an N-terminal sub-domain with a hydrophobic leader peptide. as in human extracellular superoxide dismutase which is a Cu/Zn enzyme. The latter also has a C-terminal sub-domain with preponderance of hydrophilic and positively charged residues. The amino acid sequence of this superoxide dismutase between the N-terminal and C-terminal regions shares many features of cytosolic Cu/Zn superoxide dismutase. including 20 of the 21 invariant residues found in 19 Cu/Zn enzymes, suggesting a similar type of β-barrel fold and active site structure for the extracellular enzyme.  相似文献   

18.
Link modules are hyaluronan-binding domains found in extracellular proteins involved in matrix assembly, development, and immune cell migration. Previously we have expressed the Link module from the inflammation-associated protein tumor necrosis factor-stimulated gene-6 (TSG-6) and determined its tertiary structure in solution. Here we generated 21 Link module mutants, and these were analyzed by nuclear magnetic resonance spectroscopy and a hyaluronan-binding assay. The individual mutation of five amino acids, which form a cluster on one face of the Link module, caused large reductions in functional activity but did not affect the Link module fold. This ligand-binding site in TSG-6 is similar to that determined previously for the hyaluronan receptor, CD44, suggesting that the location of the interaction surfaces may also be conserved in other Link module-containing proteins. Analysis of the sequences of TSG-6 and CD44 indicates that the molecular details of their association with hyaluronan are likely to be significantly different. This comparison identifies key sequence positions that may be important in mediating hyaluronan binding, across the Link module superfamily. The use of multiple sequence alignment and molecular modeling allowed the prediction of functional residues in link protein, and this approach can be extended to all members of the superfamily.  相似文献   

19.
The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true “ligand” of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation.  相似文献   

20.
Although many viral receptors have been identified, the ways in which they interact with their cognate viruses are not understood at the molecular level. We have determined the X-ray structure of a complex between calcium-containing modules of the very low-density lipoprotein receptor and the minor group human rhinovirus HRV2. The receptor binds close to the icosahedral five-fold vertex, with only one module per virus protomer. The binding face of this module is defined by acidic calcium-chelating residues and, in particular, by an exposed tryptophan that is highly conserved. The attachment site on the virus involves only residues from VP1, particularly a lysine strictly conserved in all minor group HRVs. The disposition of the attached ligand-binding repeats around the five-fold axis, together with the proximity of the N- and C-terminal ends of adjacent modules, suggests that more than one repeat in a single receptor molecule might attach simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号