首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A method involving isoelectric precipitation and chromatography on SE-Sephadex (sulphoethyl-Sephadex) is described for the preparation of the troponin complex free of tropomyosin from low-ionic-strength extracts of natural actomyosin and myofibrils. 2. Purified troponin complex required tropomyosin to inhibit the Mg2+-stimulated adenosine triphosphatase activity and superprecipitation of desensitized actomyosin in the presence of ethanedioxybis(ethylamine)tetra-acetate. An upper limit of 35000 for the `molecular weight' of the troponin complex was derived from the amounts required to bring about 50% of the maximum inhibition of the Mg2+-stimulated adenosine triphosphatase activity of desensitized actomyosin of known concentration. 3. In the presence of dissociating reagents the troponin complex could be dissociated into inhibitory and Ca2+-sensitizing factors, which could be isolated separately on SE-Sephadex. The inhibitory factor inhibited the Mg2+-stimulated adenosine triphosphatase activity and superprecipitation of desensitized actomyosin independently of the concentration of free Ca2+ in the medium. 4. The Ca2+-sensitizing factor changed its electrophoretic mobility on polyacrylamide gel in the presence of ethanedioxybis(ethylamine)tetra-acetate. It formed a complex with the inhibitory factor at low ionic strength and the original biological activity of the troponin complex could be restored on mixing the inhibitory factor with the Ca2+-sensitizing factor in the ratio of about 3:2. 5. Evidence is presented indicating that the ability of tropomyosin preparations to restore relaxing-protein-system activity to the troponin complex and their inhibitory effect on the Ca2+-stimulated adenosine triphosphatase activity of desensitized actomyosin are two properties of different stability to preparative procedures and tryptic digestion. This suggests that the relaxing protein system of muscle may contain another as yet uncharacterized component.  相似文献   

2.
1. Tropomyosin preparations of the Bailey type, and those prepared in the presence of dithiothreitol to prevent oxidation of protein thiol groups, inhibit the Ca2+-activated adenosine triphosphatase (ATPase) of desensitized actomyosin by up to 60%. 2. The inhibitory activity of myofibrillar extracts and tropomyosin survives various agents known to denature proteins but to the action of which tropomyosin is unusually stable, namely heating at 100° and mild tryptic digestion. It is destroyed by prolonged treatment with trypsin. 3. The ethylenedioxybis-(ethyleneamino)tetra-acetic acid (EGTA)-sensitizing factor present in extracts of natural actomyosin and myofibrils could be selectively destroyed, leaving unchanged the inhibitory effect on the Ca2+-activated ATPase. There was no correlation between the EGTA-sensitizing and the Ca2+-activated inhibitory activities of tropomyosin prepared under different conditions. 4. Optimum inhibition was achieved when tropomyosin and the myosin of desensitized actomyosin were present in approximately equimolar proportions. Tropomyosin had no effect on the Ca2+-activated ATPase of myosin measured under similar conditions. 5. Evidence is presented showing that the tropomyosin binds to desensitized actomyosin under the conditions in which the ATPase is inhibited.  相似文献   

3.
1. The Ca2+-activated adenosine triphosphatase of heavy meromyosin is maximally stimulated by lower relative molar concentrations of phenylmercuric acetate than are required with myosin. 2. Stimulation of the Ca2+-activated adenosine triphosphatase of both heavy meromyosin and myosin by thiol reagents is markedly affected by ionic strength, the effects being greater with the former than with the latter. In particular, N-ethylmaleimide strongly inhibits the Ca2+-activated adenosine triphosphatase of heavy meromyosin at ionic strength below about 0·2. 3. The precise behaviour of the thiol reagents at low ionic strength is slightly modified by the age of the heavy meromyosin and myosin preparations. 4. Stimulation of the Mg2+-activated adenosine triphosphatase of heavy meromyosin by thiol reagents is relatively insensitive to ionic strength. 5. The adenosine triphosphatases of heavy meromyosin and myosin activated by potassium chloride in the absence of bivalent activators are inhibited by thiol reagents over the range of ionic strength at which stimulation occurs in the presence of calcium chloride as activator. 6. The modifying effects of potassium chloride and sodium chloride are qualitatively different when heavy-meromyosin adenosine triphosphatase is stimulated with phenylmercuric acetate. No such difference is observed when the enzyme is stimulated with N-ethylmaleimide.  相似文献   

4.
1. We have isolated a mutant of Escherichia coli K12 (strain AN295) that forms de-repressed amounts of Mg2+,Ca2+-stimulated adenosine triphosphatase. 2. The Mg2+,Ca2+-stimulated triphosphatase activity was separated from membrane preparations from strain AN295 by extraction with 5mm-Tris–HCl buffer containing EDTA and dithiothreitol, resulting in a loss of the ATP-dependent transhydrogenase activity. The non-energy-linked transhydrogenase activity remained in the membrane residue. 3. The solubilized Mg2+,Ca2+-stimulated adenosine triphosphatase activity from strain AN295 was partially purified by repeated gel filtration. The addition of the purified Mg2+,Ca2+-stimulated adenosine triphosphatase to the membrane residue from strain AN295 reactivated the ATP-dependent transhydrogenase activity. 4. Strain AN296, lacking Mg2+,Ca2+-stimulated adenosine triphosphatase activity, was derived by transducing the mutant allele, uncA401, into strain AN295. The ATP-dependent transhydrogenase activity was lost but the non-energy linked transhydrogenase was retained. 5. The ATP-dependent transhydrogenase activity in membrane preparations from strain AN296 (uncA) could not be re-activated by the purified Mg2+,Ca2+-stimulated adenosine triphosphatase from strain AN295. However, after extraction by 5mm-Tris–HCl buffer containing EDTA and dithiothreitol, the ATP-dependent transhydrogenase activity could be re-activated by the addition of the purified Mg2+,Ca2+-stimulated adenosine triphosphatase from strain AN295 to the membrane residue from strain AN296 (uncA).  相似文献   

5.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle   总被引:15,自引:6,他引:9  
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.  相似文献   

6.
Skeletal muscle myofibrils, in the presence of 2 mM MgCl2 at pH 7.0, were found to have two classes of calcium-binding sites with apparent affinity constants of 2.1 x 106 M -1 (class 1) and ∼3 x 104 M -1 (class 2), respectively. At free calcium concentrations essential for the activation of myofibrillar contraction (∼10-6 M) there would be significant calcium binding only to the class 1 sites. These sites could bind about 1.3 µmoles of calcium per g protein. Extraction of myosin from the myofibrils did not alter their calcium-binding parameters. Myosin A, under identical experimental conditions, had little affinity for calcium. The class 1 sites are, therefore, presumed to be located in the I filaments. The class 1 sites could only be detected in F actin and myosin B preparations which were contaminated with the tropomyosin-troponin complex. Tropomyosin bound very little calcium. Troponin, which in conjunction with tropomyosin confers calcium sensitivity on actomyosin systems, could bind 22 µmoles of calcium per g protein with an apparent affinity constant of 2.4 x 106 M -1. In view of the identical affinity constants of the myofibrils and troponin and the much greater number of calcium-binding sites on troponin it is suggested that calcium activates myofibrillar contraction by binding to the troponin molecule.  相似文献   

7.
Troponin B is an inhibitor of the Mg++-activated ATPase activity of actomyosin. The inhibitory effect, which is observed, however, depends upon whether tropomyosin is also present. In the absence of tropomyosin the inhibition by troponin B is markedly reduced by increasing the ionic strength from 0.03 to 0.07, but is not affected by calcium up to a concentration of 10-4 M. Troponin A relieves the inhibition in both the absence and presence of calcium, an effect which is also shown by many polyanions and is illustrated by using RNA. Tropomyosin enhances the inhibitory effect of troponin B and renders it more resistant to increasing ionic strength but it does not make the inhibition calcium-sensitive. However, when troponin A or low concentrations of polyanions are added to troponin B and tropomyosin, the actomyosin ATPase activity becomes calcium-sensitive; i.e., in the presence of tropomyosin, troponin A or polyanions do not relieve the inhibitory action of troponin B in the absence of calcium but only in its presence. In marked contrast to this is the effect of troponin A in the absence of tropomyosin where it neutralizes the effect of troponin B under all conditions. Thus troponin A and the polyanions both confer calcium regulation on the troponin B-tropomyosin system. The similar effects exhibited by troponin A and the polyanions suggest that the addition of net negative charge to troponin B is an important factor in the conferral of calcium sensitivity. It is also clear that tropomyosin is an essential component of the regulatory mechanism.  相似文献   

8.
According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm2 surface of sensory axons of the walking leg of lobster is 1.2 x 10-3 µM/hr. (σ = ± 0.3 x 10-3; SE = 0.17 x 10-3); the corresponding value for the motor axons isslightly higher: 1.93 x 10-3 µM/hr. (σ = ± 0.41 x 10-3; SE = ± 0.14 x 10-3). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 µM/hr. (σ = ± 73.5; SE = ± 32.6) versus 111.6 µM/hr. (σ = ± 28.3; SE = ± 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10-4 µM/mm2/hr. (σ = ± 0.96 x 10-4; SE = ± 0.4 x 10-4). (3) The Ch-esterase activity per mm2 surface of squid giant axon is 9.5 x 10-5 µM/hr. (σ = ± 1.55 x 10-5; SE = ± 0.38 x 10-5). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10-5 µM/mm2/hr. (σ = ± 3.24 x 10-5; SE = ± 0.93 x 10-5). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm2 per impulse.  相似文献   

9.
1. A series of defined peptides which span the complete sequence were produced from troponin I isolated from white skeletal muscle of the rabbit. 2. Two peptides, CF1 (residues 64-133) and CN4 (residues 96-117) inhibited the Mg2+-stimulated adenosine triphosphatase of desensitized actomyosin. This inhibition was potentiated by tropomyosin and the Mg2+-stimulated adenosine triphosphatase of desensitized actomyosin. This inhibition, unlike that of troponin I and peptides derived from it, was not potentiated by tropomyosin. 4. The most active inhibitor, peptide CN4, was 45-75% as effective as troponin I when compared on a molar basis. The inhibitory peptide, CN4, and also whole troponin I were shown by affinity chromatography to interact specifically with actin. 5. A strong interaction with troponin C was demonstrated with peptide CF2 (residues 1-47), from the N-terminal region of troponin I. Somewhat weaker interactions were shown with peptides CN5 (residues 1-21) and with the inhibitory peptide CN4. 6. The significance of these interactions for the mechanisms of action of troponin I is discussed.  相似文献   

10.
Extraction with 0 04% (w/v) Triton X-100 removes the flagellar membrane from sea urchin sperm while leaving the motile apparatus apparently intact When reactivated in a suitable medium containing exogenous adenosine triphosphate (ATP), nearly 100% of the sperm are motile and they swim in a manner resembling that of live sperm. Under standard conditions, with 1 mM ATP at 25°C, the reactivated sperm had an average frequency of 32 beats/sec and progressed forward a distance of 2.4 µm/beat; comparable figures for live sperm in seawater were 46 beats/sec and 3 9 µm/beat. The adenosine triphosphatase (ATPase) activity of the reactivated sperm was measured with a pH-stat in the presence of oligomycin to inhibit residual mitochondrial ATPase. The motile sperm had an ATPase activity of 0.16 µmole Pi/(min x mg protein), while sperm that had been rendered non-motile by homogenizing had an activity of 0 045 µmole Pi/(min x mg protein). The difference between the ATPase activities of the motile and nonmotile sperm was tentatively interpreted as the amount of activity coupled to movement, and under optimal conditions it amounted to about 72% of the total ATPase activity Under some conditions the movement-coupled ATPase activity was proportional to the beat frequency, but it was possibly also affected by other wave parameters. The coupled ATPase activity decreased to almost zero when movement was prevented by raising the viscosity, or by changing the pH or salt concentration. The motility of reactivated sperm was wholly dependent on the presence of ATP; other nucleotides gave very low phosphatase activity and no movement. The requirement for a divalent cation was best satisfied with Mg++, although some motility was also obtained with Mn++ and Ca++. The coupled ATPase activity had a Michaelis constant (Km) of 0.15 mM. The beat frequency of the reactivated sperm varied with the ATP concentration, with an effective "Km" of 0.2 mM.  相似文献   

11.
Myosin has been separated from Physarum polycephalum actomyosin in confirmation of the results of Hatano and Tazawa. In an intermediate step, myosin-enriched actomyosin has also been obtained. The mean yield of free myosin was 4.4 mg from 100 g of mold. It was obtained as water-clear solutions at µ = 0.055 with calcium ATPase activity of up to 0.5 µM Pi/min per mg. Negatively stained preparations were examined by electron microscopy. Physarum myosin in 0.5 M KCl interacted with actin from rabbit skeletal muscle to form polarized arrowhead complexes similar to but less regular than those of natural actomyosin from muscle or myosin-enriched Physarum actomyosin. The Physarum myosin-enriched actomyosin at low ionic strength displayed evidence of head-to-tail and tail-to-tail aggregation attributable to the myosin component. Yet Physarum myosin alone did not produce detectable filaments at µ = 0.055 at pH 7, 6.5, or 5.8, nor when dialyzed against 0.01 M ammonium acetate, nor when the dielectric constant of the medium was reduced. However, aggregation approaching the extent of ‘thick filaments’ up to 0.3 µ long was found in some preparations of myosin-enriched actomyosin put into solutions containing adenosine triphosphate. Myosin alone in such solutions did not form filaments. The results are compatible with the idea that head-to-tail aggregations are favored by actin-myosin interactions in Physarum, possibly due to alignment of the extended or tail portions of this myosin molecule.  相似文献   

12.
1. The `30s' and `50s' ribosomes from ribonuclease-active (Escherichia coli B) and -inactive (Pseudomonas fluorescens and Escherichia coli MRE600) bacteria have been studied in the ultracentrifuge. Charge anomalies were largely overcome by using sodium chloride–magnesium chloride solution, I 0·16, made 0–50mm with respect to Mg2+. 2. Differentiation of enzymic and physical breakdown at Mg2+ concentrations less than 5mm was made by comparing the properties of E. coli B and P. fluorescens ribosomes. 3. Ribonuclease-active ribosomes alone showed a transformation of `50s' into 40–43s components. This was combined with the release of a small amount of `5s' material which may be covalently bound soluble RNA. Other transformations of the `50s' into 34–37s components were observed in both ribonuclease-active and -inactive ribosomes at 1·0–2·5mm-Mg2+, and also with E. coli MRE600 when EDTA (0·2mm) was added to a solution in 0·16m-sodium chloride. 4. Degradation of ribonuclease-active E. coli B ribosomes at Mg2+ concentration 0·25mm or less was coincident with the formation of 16s and 21s ribonucleoprotein in P. fluorescens, and this suggested that complete dissociation of RNA from protein was not an essential prelude to breakdown of the RNA by the enzyme. 5. As high Cs+/Mg2+ ratios cause ribosomal degradation great care is necessary in the interpretation of equilibrium-density-gradient experiments in which high concentrations of caesium chloride or similar salts are used. 6. The importance of the RNA moiety in understanding the response of ribosomes to their ionic environment is discussed.  相似文献   

13.
Vesicles consisting of (Ca2++Mg2+)-dependent ATPase (adenosine triphosphatase), and lipid were prepared from sarcoplasmic reticulum of rabbit skeletal muscle. As with non-ionic detergents [le Maire, Møller & Tanford (1976) Biochemistry 15, 2336–2342] the (Ca2++Mg2+)-dependent ATPase after solubilization by deoxycholate showed a pronounced tendency to form oligomers in gel-chromatographic experiments, when eluted in the presence of deoxycholate and phosphatidylcholine. To evaluate the functional significance of oligomer formation the properties of enzymically active preparations of ATPase, solubilized by deoxycholate, were studied. Such preparations were obtained at a protein concentration of 2.5mg/ml in the presence of a high salt concentration (0.4m-KCl) and sucrose (0.3m) in the solubilization medium. Analytical ultracentrifugation of solubilized ATPase showed one protein boundary moving at the same rate as gel-chromatographically prepared monomeric ATPase (s20,w=6.0S). From simultaneous measurements of the diffusion coefficient an apparent molecular weight of 133000 was calculated, consistent with solubilization of ATPase in predominantly monomeric form. The enzymic activity of deoxycholate-solubilized ATPase when measured directly in the solubilization medium at optimal Ca2+ and MgATP concentrations was about 35–50% of that of vesicular ATPase. The dependence of enzymic activity on MgATP concentration indicated that the solubilized ATPase retained high-affinity binding of MgATP, but the presence of high concentrations of the nucleotide did not stimulate activity further, in contrast with that of vesicular ATPase. The dependence of enzymic activity on the free Ca2+ concentration was essentially the same for both solubilized and vesicular forms, indicating that interaction of ATPase with more than one molecule of Ca2+ is required for enzyme activity. Solubilized enzyme at 20°C was phosphorylated to about the same degree as vesicular ATPase. It is concluded that the catalytic activity of monomeric ATPase retains most of the features of vesicular ATPase and that extensive oligomer formation in gel-chromatographic experiments in the presence of deoxycholate probably reflects processes taking place during inactivation and delipidation of the protein.  相似文献   

14.
1. Rat-liver mitochondria showed a decrease in amino acid production after preparation in 0·25m-sucrose containing EDTA (1mm), but an increase in water content. When EDTA was replaced by Mn2+ (1mm) or succinate (1mm), both amino acid production and water content were lowered, whereas preparation in 0·9% potassium chloride caused an increase in both. 2. Amino acid production by rat-liver homogenates prepared in 0·9% potassium chloride or 0·25m-sucrose was similar (qamino acid 0·047 and 0·042 respectively aerobically). After freezing-and-thawing qamino acid values were approximately doubled, and approached that of a homogenate prepared in water. 3. All cations tested inhibited amino acid production by mitochondria, Hg2+ and Zn2+ being the most effective in tris–hydrochloric acid buffer. In phosphate buffer Mg2+ and Mn2+ had no effect. Of the anions tested only pyrophosphate and arsenate had any inhibitory effect at final concn. 1mm. 4. Iodosobenzoate (1mm) and p-chloromercuribenzenesulphonate (1mm) inhibited mitochondrial amino acid production by 70–80%, whereas soya-bean trypsin inhibitor, EDTA and di-isopropyl phosphorofluoridate inhibited by a maximum of 30%. Respiratory inhibitors had no effect. 5. Rat-liver homogenate and subcellular fractions each showed an individual pattern of inhibition when a series of inhibitors was tested. 6. Amino acid production by mitochondria was decreased by up to 50% in the presence of oxidizable substrate, apart from α-glycerophosphate and palmitate, which had no effect. CoA stimulated amino acid production in tris–hydrochloric acid but not in phosphate buffer, α-oxoglutarate abolishing the stimulation. 7. Cysteine and glutathione stimulated amino acid production by whole mitochondria by 30%, but only reduced glutathione stimulated production in broken mitochondria. 8. Adrenocorticotrophic hormone and growth hormone stimulated mitochondrial amino acid production by 21–24%, whereas insulin inhibited production by 25%. 9. Coupled oxidative phosphorylation increased amino acid production by up to 154% at 25° and 40°. The increase was abolished by 2,4-dinitrophenol. 10. Amino acid incorporation in mitochondria was accompanied by an increase in amino acid production, both being decreased by chloramphenicol. 11. Mitochondrial production of ninhydrin-positive material was increased in the presence of albumin. The biggest increase was noted for the soluble fraction of broken mitochondria. No increase was found in the presence of 14C-labelled algal protein or denatured mitochondrial protein.  相似文献   

15.
Heart muscle contraction is regulated by Ca2+ binding to the thin filament protein troponin C. In cardiovascular disease, the myofilament response to Ca2+ is often altered. Compounds that rectify this perturbation are of considerable interest as therapeutics. Plant flavonoids have been found to provide protection against a variety of human illnesses such as cancer, infection, and heart disease. (−)-Epigallocatechin gallate (EGCg), the prevalent flavonoid in green tea, modulates force generation in isolated guinea pig hearts (Hotta, Y., Huang, L., Muto, T., Yajima, M., Miyazeki, K., Ishikawa, N., Fukuzawa, Y., Wakida, Y., Tushima, H., Ando, H., and Nonogaki, T. (2006) Eur. J. Pharmacol. 552, 123–130) and in skinned cardiac muscle fibers (Liou, Y. M., Kuo, S. C., and Hsieh, S. R. (2008) Pflugers Arch. 456, 787–800; and Tadano, N., Yumoto, F., Tanokura, M., Ohtsuki, I., and Morimoto, S. (2005) Biophys. J. 88, 314a). In this study we describe the solution structure of the Ca2+-saturated C-terminal domain of troponin C in complex with EGCg. Moreover, we show that EGCg forms a ternary complex with the C-terminal domain of troponin C and the anchoring region of troponin I. The structural evidence indicates that the binding site of EGCg on the C-terminal domain of troponin C is in the hydrophobic pocket in the absence of troponin I, akin to EMD 57033. Based on chemical shift mapping, the binding of EGCg to the C-terminal domain of troponin C in the presence of troponin I may be to a new site formed by the troponin C·troponin I complex. This interaction of EGCg with the C-terminal domain of troponin C·troponin I complex has not been shown with other cardiotonic molecules and illustrates the potential mechanism by which EGCg modulates heart contraction.Cardiovascular disease (CVD)2 is the number one cause of morbidity and mortality in western culture. In the United States, ∼1 in 3 deaths in 2004 were caused by CVD (1). In heart failure, the ability of the heart to distribute blood throughout the body is perturbed, and there is a growing interest to develop drugs that directly regulate the response of the myofilament to Ca2+. Regulation of muscle contraction is triggered by Ca2+ binding to troponin. The troponin complex is situated at regular intervals along the thin filament, which is made up of two elongated polymers, f-actin and tropomyosin. The backbone of the thin filament is composed of actin molecules arranged in a double helix with tropomyosin wound around actin as a coiled-coil. Anchored at every seventh actin molecule is the heterotrimeric troponin complex, which consists of troponin C (TnC), troponin I (TnI), and troponin T (TnT). TnC is the Ca2+-binding subunit of troponin and has four EF-hand helix-loop-helix motifs. TnI is the inhibitory subunit of troponin. It regulates the actin-myosin cross-bridge formation by flipping between TnC and actin in a Ca2+-dependent manner. At low levels of cytosolic Ca2+, TnI is bound to actin, causing tropomyosin to sterically block the binding of the actomyosin cross-bridges. On the other hand, when Ca2+ concentration is high, TnI translocates from actin to TnC inducing tropomyosin to change its orientation on actin so that the actin-myosin interaction may occur. The subunit TnT fetters the troponin complex to the thin filament by way of its association with TnI (for reviews on contraction see Refs. 25).The large number of structural studies on troponin and the thin filament has helped gain insight into the molecular mechanism of muscle contraction. TnC is a dumbbell-shaped protein that consists of terminal domains connected by an elongated flexible linker, as shown by solution NMR (6). The overall folds of the terminal domains of skeletal TnC (sTnC) and cardiac TnC (cTnC) are very similar (79). The apo state of the N-domain of sTnC (sNTnC) and cTnC (cNTnC) reveals that the domain is in a “closed” conformation, such that the hydrophobic core of the protein is buried (8, 10, 11). In the skeletal system, sNTnC “opens” when two Ca2+ ions bind (8, 10, 11). Alternatively, cNTnC contains only one functional Ca2+-binding site, and its global conformation does not change as significantly as in sNTnC (11). Nonetheless, Ca2+ binding promotes the association of the switch region of cTnI (residues 147–163) with cNTnC. cTnI-(147–163) forms an α-helix when associated with cNTnC and has been elucidated by NMR in the solution structure of cNTnC·Ca2+·cTnI-(147–163) (12) and by the x-ray crystallography structure of cTnC·3Ca2+·cTnI·-(31–210)·cTnT-(183–288) (13). The interaction of cTnI-(147–163) with cNTnC·Ca2+ is essential to draw the inhibitory (cTnI-(128–147)) and C-terminal (cTnI-(163–210)) regions of cTnI away from actin. cTnI-(128–147) is not visualized in the cardiac structure, probably due to disorder (13). In the skeletal crystal structure of sTnC·4Ca2+·sTnI-(1–182)·sTnT-(156–262), however, the inhibitory region of sTnI is visualized and makes electrostatic contacts with the central helix connecting the N- and C-terminal lobes of cTnC (14). The C-domain (CTnC) of both sTnC and cTnC has two functional binding sites for Ca2+ and remains largely unstructured without Ca2+ bound. The folding of this domain occurs in the presence of Ca2+ (15, 16). Throughout the relaxation-contraction cycle, cCTnC is Ca2+-saturated with both Ca2+-binding sites occupied (cCTnC·2Ca2+) and is associated with the anchoring region of cTnI (cTnI-(34–71)). The crystal structure of cTnC·3Ca2+·cTnI·-(31–210)·cTnT-(183–288) shows cTnI-(34–71) is α-helical when bound with cCTnC·2Ca2+(13). The interaction of cCTnC·2Ca2+ with cTnI-(34–71) is the primary site in which cTnC is tethered to the thin filament.In light of the importance of the Ca2+-dependent cTnI-cTnC interaction in the signaling of muscle contraction, the design of drugs that modulate this interaction would be useful in the treatment of heart disease. Compounds that treat CVD through modulation of the activity of cTnC are called Ca2+ sensitizers or desensitizers, depending on whether they positively or negatively influence its function. These drugs are safer than other currently prescribed medicines that alter the cytosolic Ca2+ homeostasis (such as milrinone and dobutamine), which may cause arrhythmia or death with prolonged usage.The potential therapeutic advantage of Ca2+ (de)sensitizers has led to the development of a number of compounds that target cTnC. Compounds have been identified that elicit their activity through binding either cNTnC or cCTnC. Levosimendan and pimobendan are examples of molecules that increase heart muscle contractility through binding to cNTnC. Conversely, the molecule W7 decreases contractility via its interaction with cNTnC. For recent reviews on the molecular mechanism of these compounds and others see Refs. 1719. The discovery of small molecules that bind to cCTnC to elicit their Ca2+-sensitizing effects suggests that cCTnC is also a suitable target for the development of therapeutics. The Ca2+ sensitizer, EMD 57033, is approved for the treatment for heart failure in dogs and binds to cCTnC·2Ca2+(20). In the NMR structure of cCTnC·2Ca2+·EMD 57033, EMD 57033 is associated in the hydrophobic cavity of cCTnC·2Ca2+ (21). The interaction of EMD 57033 with cCTnC is stereospecific for the (+)-enantiomer and explains why the (−)-enantiomer is inactive (22). Because EMD 57033 has been shown to bind cCTnC·2Ca2+ concurrently with cTnI-(128–147) but not with cTnI-(34–71) (23), one postulate is that EMD 57033 acts as a Ca2+ sensitizer by weakening the interaction of cTnI-(34–71) with cCTnC·2Ca2+, thus increasing the propensity of cTnI-(128–147) to bind cCTnC·2Ca2+ in vivo. The dilated cardiomyopathy (DCM) mutation, G159D, of cCTnC has renewed interest in the role of the C-lobe for regulation in contraction. The mutation has been identified to decrease the sensitivity of the thin filament to Ca2+ (24). The source of the DCM phenotype of G159D might come from the modulation of the interaction of cCTnC·2Ca2+ with cTnI-(34–71) (25).Green tea (Camellia sinensis) is one of the most widely consumed beverages in the world, and several epidemiological studies have linked the consumption of tea with a decrease in CVD (26, 27). (−)-Epigallocatechin gallate (EGCg) is a polyphenol that exists abundantly in unfermented teas and has been identified as a modulator of heart contraction through its interaction with cTnC (2830). Here we use NMR spectroscopy to elucidate the three-dimensional structure of the cCTnC·2Ca2+·EGCg complex. The solution structure reveals that EGCg binds at the hydrophobic core of cCTnC inducing a small structural “opening.” We also use two-dimensional NMR spectroscopy to monitor the binding of EGCg to cCTnC·2Ca2+ and cCTnC·2Ca2+·cTnI-(34–71). Because EGCg and cTnI-(34–71) can bind cCTnC concurrently, the inotropic effect of EGCg may stem from its modulation of the cTnI-(34–71)-cCTnC·2Ca2+ interaction. The solution structure of cCTnC·2Ca2+·EGCg provides insight into the mechanism in which EGCg might influence heart contraction. These results taken with previous research on the Ca2+ sensitizer EMD 57033 and the DCM mutation G159D bring into question the dogma that cNTnC is the exclusive site for regulation of contraction in cTnC.  相似文献   

16.
17.
Troponin: regulatory function and disorders   总被引:1,自引:0,他引:1  
Study of the molecular biology of the calcium regulation of muscle contraction was initiated by Professor Ebashi’s discovery of a protein factor that sensitized actomyosin to calcium ions. This protein factor was separated into two proteins: tropomyosin and a novel protein named troponin. Troponin is a Ca2+-receptive protein for the Ca2+-regulation of muscle contraction and, in association with tropomyosin, sensitizes actomyosin to Ca2+. Troponin forms an ordered regulatory complex with tropomyosin in the thin filament. Several regulatory properties of troponin, which is composed of three different components, troponins C, I, and T, are discussed in this article. Genetic studies have revealed that many mutations of genes for troponin components, especially troponins T and I, are involved in the three types of inherited cardiomyopathy. Results of functional analyses indicate that changes in the Ca2+-sensitivity caused by troponin mutations are the critical functional consequences leading to these disorders. Recent results of this pathophysiological aspect of troponin are also discussed.  相似文献   

18.
TRPC5 forms non-selective cation channels. Here we studied the role of internal Ca2+ in the activation of murine TRPC5 heterologously expressed in human embryonic kidney cells. Cell dialysis with various Ca2+ concentrations (Ca2+i) revealed a dose-dependent activation of TRPC5 channels by internal Ca2+ with EC50 of 635.1 and 358.2 nm at negative and positive membrane potentials, respectively. Stepwise increases of Ca2+i induced by photolysis of caged Ca2+ showed that the Ca2+ activation of TRPC5 channels follows a rapid exponential time course with a time constant of 8.6 ± 0.2 ms at Ca2+i below 10 μm, suggesting that the action of internal Ca2+ is a primary mechanism in the activation of TRPC5 channels. A second slow activation phase with a time to peak of 1.4 ± 0.1 s was also observed at Ca2+i above 10 μm. In support of a Ca2+-activation mechanism, the thapsigargin-induced release of Ca2+ from internal stores activated TRPC5 channels transiently, and the subsequent Ca2+ entry produced a sustained TRPC5 activation, which in turn supported a long-lasting membrane depolarization. By co-expressing STIM1 plus ORAI1 or the α1C and β2 subunits of L-type Ca2+ channels, we found that Ca2+ entry through either calcium-release-activated-calcium or voltage-dependent Ca2+ channels is sufficient for TRPC5 channel activation. The Ca2+ entry activated TRPC5 channels under buffering of internal Ca2+ with EGTA but not with BAPTA. Our data support the hypothesis that TRPC5 forms Ca2+-activated cation channels that are functionally coupled to Ca2+-selective ion channels through local Ca2+ increases beneath the plasma membrane.  相似文献   

19.
20.
Five metallic cations (Fe3+, Cr3+, Ca2+, Mg2+, Mn2+; concentration range, 1.85 × 10-4 to 37 × 10-4m) were incorporated individually as chlorides into nutrient broth and agar media used for the recovery of phenol-treated Escherichia coli. The effects observed varied with the concentration and the ionic species. In nutrient agar, Fe3+ and Cr3+ were generally beneficial but were toxic at 37 × 10-4m. Of the divalent ions tested, Ca2+ and Mg2+ usually gave higher counts in nutrient broth, except at a concentration of 9.25 × 10-4m, whereas the effect of Mn2+ was rather variable. Two possible explanations are suggested to explain these effects. Toxic materials may be removed from the media by the precipitates formed on the addition of Fe3+ or Cr3+, or, in the case of the divalent ions, the integrity of the bacterial cell membranes may be maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号