首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although transactivation by the liganded vitamin D receptor (VDR) is well described at the molecular level, the precise molecular mechanism of negative regulation by the liganded VDR remains to be elucidated. We have previously reported a novel class of negative vitamin D response element (nVDRE) called 1alphanVDRE in the human 25(OH)D31alpha-hydroxylase [1alpha(OH)ase] gene by 1alpha,25(OH)2D3-bound VDR. This element was composed of two E-box-type motifs that bound to VDIR for transactivation, which was attenuated by liganded VDR. Here, we explore the possible functions of VDIR and E-box motifs in the human (h) PTH and hPTHrP gene promoters. Functional mapping of the hPTH and hPTHrP promoters identified E-box-type elements acting as nVDREs in both the hPTH promoter (hPTHnVDRE; -87 to -60 bp) and in the hPTHrP promoter (hPTHrPnVDRE; -850 to -600 bp; -463 to -104 bp) in a mouse renal tubule cell line. The hPTHnVDRE alone was enough to direct ligand-induced transrepression mediated through VDR/retinoid X receptor and VDIR. Direct DNA binding of hPTHnVDRE to VDIR, but not VDR/retinoid X receptor, was observed and ligand-induced transrepression was coupled with recruitment of VDR and histone deacetylase 2 (HDAC2) to the hPTH promoter. These results suggest that negative regulation of the hPTH gene by liganded VDR is mediated by VDIR directly binding to the E-box-type nVDRE at the promoter, together with recruitment of an HDAC corepressor for ligand-induced transrepression.  相似文献   

3.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, mediates many of its effects through the intranuclear vitamin D receptor (VDR, NR1I1), that belongs to the large superfamily of nuclear receptors. Vitamin D receptor can directly regulate gene expression by binding to vitamin D response elements (VDREs) located in promoter or enhancer regions of various genes. Although numerous synthetic analogs of 1alpha,25(OH)(2)D(3) have been analysed for VDR binding and transactivation of VDRE-driven gene expression, the biologic activity of many naturally occurring metabolites has not yet been analyzed in detail. We therefore studied the transactivation properties of 1alpha,24R, 25-trihydroxyvitamin D(3) (1alpha,24R,25(OH)(3)D(3)), 1alpha, 25-dihydroxy-3-epi-vitamin D(3) (1alpha,25(OH)(2)-3-epi-D(3)), 1alpha,23S,25-trihydroxyvitamin D(3) (1alpha,23S,25(OH)(3)D(3)), and 1alpha-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D(3) (1alpha(OH)-24,25,26,27-tetranor-23-COOH-D(3); calcitroic acid) using the human G-361 melanoma cell line. Cells were cotransfected with a VDR expression plasmid and luciferase reporter gene constructs driven by two copies of the VDRE of either the mouse osteopontin promoter or the 1alpha,25(OH)(2)D(3) 24-hydroxylase (CYP24) promoter. Treatment with 1alpha,25(OH)(2)D(3) or the metabolites 1alpha,24R,25(OH)(3)D(3), 1alpha,25(OH)(2)-3-epi-D(3), and 1alpha,23S,25(OH)(3)D(3) resulted in transactivation of both constructs in a time- and dose-dependent manner, and a postitive regulatory effect was observed even for calcitroic acid in the presence of overexpressed VDR. The metabolites that were active in the reporter gene assay also induced expression of CYP24 mRNA in the human keratinocyte cell line HaCaT, although with less potency than the parent hormone. A ligand-binding assay based on nuclear extracts from COS-1 cells overexpressing human VDR demonstrated that the metabolites, although active in the reporter gene assay, were much less effective in displacing [(3)H]-labeled 1alpha,25(OH)(2)D(3) from VDR than the parent hormone. Thus, we report that several natural metabolites of 1alpha,25(OH)(2)D(3) retain significant biologic activity mediated through VDR despite their apparent low affinity for VDR.  相似文献   

4.
5.
6.
7.
8.
The vitamin D3 24-hydroxylase gene (CYP24) is one of the most strongly induced genes known. Despite this, its induction by the hormone 1alpha,25-dihydroxyvitamin D3 (1alpha,25OH2D3) has been characterized only partially. Therefore, we monitored the spatio-temporal, 1alpha,25OH2D3-dependent chromatin acetylation status of the human CYP24 promoter by performing chromatin immunoprecipitation (ChIP) assays with antibodies against acetylated histone 4. This was achieved by performing PCR on 25 contiguous genomic regions spanning the first 7.7 kb of the promoter. ChIP assays using antibodies against the 1alpha,25OH2D3 receptor (VDR) revealed that, in addition to the proximal promoter, three novel regions further upstream associated with VDR. Combined in silico/in vitro screening identified in three of the four promoter regions sequences resembling known VDREs and reporter gene assays confirmed the inducibility of these regions by 1alpha,25OH2D3)=. In contrast, the fourth VDR-associated promoter region did not contain any recognizable classical VDRE that could account for the presence of the protein on this region. However, re-ChIP assays monitored on all four promoter regions simultaneous association of VDR with retinoid X receptor, coactivator, mediator and RNA polymerase II proteins. These proteins showed a promoter region-specific association pattern demonstrating the complex choreography of the CYP24 gene promoter activation over 300 minutes. Thus, this study reveals new information concerning the regulation of the CYP24 gene by 1alpha,25OH2D3, and is a demonstration of the simultaneous participation of multiple, structurally diverse response elements in promoter activation in a living cell.  相似文献   

9.
10.
11.
We have recently reported that 23(S)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) efficiently blocks the differentiation of HL-60 cells induced by 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) (Miura, D., Manabe, K., Ozono, K., Saito, M., Gao, Q., Norman, A. W., and Ishizuka, S. (1999) J. Biol. Chem. 274, 16392-16399). To clarify the molecular mechanisms of this antagonism, we examined whether TEI-9647 antagonizes the genomic effects of 1alpha,25(OH)(2)D(3). 10(-7) to 10(-9) M TEI-9647 inhibited the transactivation effect of 10(-8) M 1alpha,25(OH)(2)D(3) in a dose-dependent manner, while TEI-9647 alone did not activate the reporter activity driven by SV40 promoter containing two vitamin D response elements in Saos-2 cells. The antagonistic effect of TEI-9647 was also observed using the rat 24-hydroxylase gene promoter, but the effect was weaker in HeLa and COS-7 cells than in Saos-2 cells. TEI-9647 also exhibited antagonism in an assay system where the VDR fused to the GAL4 DNA-binding domain and the reporter plasmid containing the GAL4 binding site were used in Saos-2 cells, but did not in HeLa cells. TEI-9647 reduced the interaction between VDR and RXRalpha according to the results obtained from the mammalian two-hybrid system in Saos-2 cells, but did not in HeLa cells. The two-hybrid system also revealed that the interaction between VDR and SRC-1 was reduced by TEI-9647 in Saos-2 cells. These results demonstrate that the novel 1alpha,25(OH)(2)D(3) analogue, TEI-9647, is the first synthetic ligand for the VDR that efficiently antagonizes the action of 1alpha, 25(OH)(2)D(3), although the extent of its antagonism depends on cell type.  相似文献   

12.
13.
14.
Carlberg C  Quack M  Herdick M  Bury Y  Polly P  Toell A 《Steroids》2001,66(3-5):213-221
The vitamin D(3) receptor (VDR) acts primarily as a heterodimer with the retinoid X receptor (RXR) on different types of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) response elements (VDREs). Therefore, DNA-bound VDR-RXR heterodimers can be considered as the molecular switches of 1alpha,25(OH)(2)D(3) signalling. Functional conformations of the VDR within these molecular switches appear to be of central importance for describing the biologic actions of 1alpha,25(OH)(2)D(3) and its analogues. Moreover, VDR conformations provide a molecular basis for understanding the potential selective profile of VDR agonists, which is critical for a therapeutic application. This review discusses VDR conformations and their selective stabilization by 1alpha,25(OH)(2)D(3) and its analogues, such as EB1089 and Gemini, as a monomer in solution or as a heterodimer with RXR bound to different VDREs and complexed with coactivator or corepressor proteins.  相似文献   

15.
The vitamin D receptor (VDR), initially identified as a nuclear receptor for 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3], regulates calcium metabolism, cellular proliferation and differentiation, immune responses, and other physiological processes. Recently, secondary bile acids such as lithocholic acid (LCA) were identified as endogenous VDR agonists. To identify structural determinants required for VDR activation by 1alpha,25(OH)2D3 and LCA, we generated VDR mutants predicted to modulate ligand response based on sequence homology to pregnane X receptor, another bile acid-responsive nuclear receptor. In both vitamin D response element activation and mammalian two-hybrid assays, we found that VDR-S278V is activated by 1alpha,25(OH)2D3 but not by LCA, whereas VDR-S237M can respond to LCA but not to 1alpha,25(OH)2D3. Competitive ligand binding analysis reveals that LCA, but not 1alpha,25(OH)2D3, effectively binds to VDR-S237M and both 1alpha,25(OH)2D3 and LCA bind to VDR-S278V. We propose a docking model for LCA binding to VDR that is supported by mutagenesis data. Comparative analysis of the VDR-LCA and VDR-1alpha,25(OH)2D3 structure-activity relationships should be useful in the development of bile acid-derived synthetic VDR ligands that selectively target VDR function in cancer and immune disorders without inducing adverse hypercalcemic effects.  相似文献   

16.
17.
18.
Vitamin D3, an important seco-steroid hormone for the regulation of body calcium homeostasis, promotes immature myeloid precursor cells to differentiate into monocytes/macrophages. Vitamin D receptor (VDR) belongs to a nuclear receptor super-family that mediates the genomic actions of vitamin D3 and regulates gene expression by binding with vitamin D response elements in the promoter region of the cognate gene. Thus by regulating gene expression, VDR plays an important role in modulating cellular events such as differentiation, apoptosis, and growth. Here we report lipopolysaccharide (LPS), a bacterial toxin; decreases VDR protein levels and thus inhibits VDR functions in the human blood monocytic cell line, THP-1. The biologically active form of vitamin D3, 1alpha,25-dihydroxy vitamin D3 [1,25(OH)2D3], induced VDR in THP-1 cells after 24 h treatment, and LPS inhibited 1,25(OH)2D3-mediated VDR induction. However, LPS and 1,25(OH)2D3 both increased VDR mRNA levels in THP-1 cells 20 h after treatment, as observed by real time RT-PCR. Moreover, LPS plus 1,25(OH)2D3 action on VDR mRNA level was additive and synergistic. A time course experiment up to 60 h showed an increase in VDR mRNA that was not preceded with an increase in VDR protein levels. Although the proteasome pathway plays an important role in VDR degradation, the proteasome inhibitor lactacystin had no effect on the LPS-mediated down-regulation of 1,25(OH)2D3 induced VDR levels. Reduced VDR levels by LPS were accompanied by decreased 1,25(OH)2D3/VDR function determined by VDR responsive 24-hydroxylase (CYP24) gene expression. The above results suggest that LPS impairs 1,25(OH)2D3/VDR functions, which may negatively affect the ability of 1,25(OH)2D3 to induce myeloid differentiation into monocytes/macrophages.  相似文献   

19.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号