首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Bacteriorhodopsin (BR) essentially free of native lipids has been prepared in a highly stable state. Purple membrane was solubilized in Triton X-100 and BR was purified by size exclusion chromatography using 3-[cholamidopropyl)dimethylammonio]-2-hydroxyl-1-propanesulfonic acid (CHAPSO) detergent at pH 5. Molar ratios of phospholipid/BR ranged from 0.4 to 0.05 corresponding to 94-98% phospholipid removal. Purified BR has an absorbance ratio (A280nm/A548nm) of 1.5-1.6 in the dark-adapted state which is the highest purified BR/protein ratio reported to date. The purified BR in CHAPSO shows maximum stability in the pH range 5.0-5.5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of native purple membrane and solubilized BR from most Halobacterium halobium JW-3 cultures show 3 higher molecular weight bands in addition to BR. Immunological staining and amino acid sequencing indicates that these additional proteins are partially processed forms of the BR precursor protein. The BR preprotein contains 13 additional amino acids on the NH2 terminus which are removed by post-translational processing in at least four steps. Isoelectric focusing separated most delipidated and non-delipidated BR samples into 8 bands. Incomplete BR post-translational processing BR is thought to be largely responsible for the multiplicity of isoelectric BR species. The principal components have pI values of 5.20 and 5.24 and both have absorption maxima at 550 nm, characteristic of detergent-solubilized BR. BR in Triton X-100 or nonylglucoside, delipidated BR in CHAPSO, and BR in intact purple membrane all have a dark-adapted ratio of 13-cis to all-trans-retinal of 1.9:1.  相似文献   

2.
Due to the action of a serum protease, the two most cathodal isoinhibitors of the alpha 1-proteinase inhibitor (alpha 1-PI) are cleaved at the Gly5-Asp6 bond and lack two negative charges. In spite of this, these can bind trypsin and chymotrypsin, showing that the N-terminal pentapeptide is not indispensable for inhibition function. Pancreatic proteases also cleave a bond near the N-terminus in alpha 1-PI, resulting in a loss of two negative charges and a corresponding cathodal shift in the electrofocusing behavior of the isoinhibitors. Trypsin cleaves isoinhibitors near the N-terminus at a large inhibitor excess and unless an additional cleavage takes place, at least two of the new isoinhibitors remain active. An additional cleavage(s), most likely at a distance of 30-40 residues from the C-terminus results in a corresponding decrease of the molecular mass and a loss of inhibition function. Although the C-terminal cleavage peptide does separate from the protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it remains associated with it under conditions of polyacrylamide gel isoelectric focusing. Chymotrypsin also cleaved alpha 1-PI near the N-terminus but this could be observed only at protease excess and the modified isoinhibitors did not form complexes with chymotrypsin. The molecular polymorphism of alpha 1-PI is partly explained by the absence of the N-terminal pentapeptide from some of the isoinhibitors.  相似文献   

3.
The apparent isoelectric points (pI) in isoelectric focusing (IF) of human pituitary and amniotic fluid prolactin (hPRL), both non-iodinated and iodinated, were determined. Unresolved mixtures of pituitary hPRL isohormones E and F, and of at least five isohormones found in amniotic fluid, and plasma hPRL exhibit an average pI value of 6.5 - 6.7. Transient state pH values observed or previously reported for hPRL components range from pH 5.9 to 6.8 after correction to standard conditions. At pH 8.1, the major isohormone, hPRL-F, carriers a charge of 2.2 net protons per molecule. The net charge differences among isohormones E, F and G are compatible with acquisition or loss of single charged groups per 20,000 molecular weight. This net charge is similar to that of the least prolactin-bioactive major isohormone of human growth hormone (hGH-B), while the hGH with a bioactivity comparable to that of hPRL exhibits a net charge of 3.4 valence units. The "large" isohormones J and H increased net charges, by a factor of 2-3, in direct proportion to their size increments.  相似文献   

4.
The net charge and isoelectric pH (pI) of a protein depend on the content of ionizable groups and their pK values. Ribonuclease Sa (RNase Sa) is an acidic protein with a pI = 3.5 that contains no Lys residues. By replacing Asp and Glu residues on the surface of RNase Sa with Lys residues, we have created a 3K variant (D1K, D17K, E41K) with a pI = 6.4 and a 5K variant (3K + D25K, E74K) with a pI = 10.2. We show that pI values estimated using pK values based on model compound data can be in error by >1 pH unit, and suggest how the estimation can be improved. For RNase Sa and the 3K and 5K variants, the solubility, activity, and stability have been measured as a function of pH. We find that the pH of minimum solubility varies with the pI of the protein, but that the pH of maximum activity and the pH of maximum stability do not.  相似文献   

5.
Incubation of purified rat brain tubulin with cholera toxin and radiolabeled [32P] or [8-3H]NAD results in the labeling of both alpha and beta subunits as revealed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Treatment of these protein bands with snake venom phosphodiesterase resulted in quantitative release of labeled 5'-AMP, respectively labeled with the corresponding isotope. Two-dimensional separation by isoelectric focusing and SDS-PAGE of labeled and native tubulin revealed that labeling occurs at least in four different isotubulins. The isoelectric point of the labeled isotubulins was slightly lower than that of native purified tubulin. This shift in mobility is probably due to additional negative charges involved with the incorporation of ADP-ribosyl residues into the tubulin subunits. SDS-PAGE of peptides derived from [32P]ADP-ribosylated alpha and beta tubulin subunits by Staphylococcus aureus protease cleavage showed a peptide pattern identical with that of native tubulin. Microtubule-associated proteins (MAP1 and MAP2) of high molecular weight were also shown to undergo ADP-ribosylation. Incubation of permeated rat neuroblastoma cells in the presence of [32P]NAD and cholera toxin results in the labeling of only a few cell proteins of which tubulin is one of the major substrates.  相似文献   

6.
Diphtheria toxin catalyzes the ADP-ribosylation of elongation factor 2 (EF-2) in eukaryotes and archaebacteria. As the reaction is strictly EF-2 specific and introduces two negative charges into the molecule, the resulting shift in the isoelectric point (pI) by 0.2 pH units was used to establish a new purification method for EF-2 from Sulfolobus acidocaldarius. The cells were lysed with dithiothreitol at pH 9 and EF-2 was purified by ammonium sulfate precipitation, gel filtration on Sephadex G-200, and three isoelectric focusing steps. The EF-2-containing fractions from the first isoelectric focusing step at pH 4-9 were refocused in a more narrow pH-gradient (pH 5-7). The EF-2 peak from the second step was eluted, collecting only the fractions above the pH region where ADP-ribosylated EF-2 would focus. The EF-2 was then ADP-ribosylated with diphtheria toxin and NAD and subjected to further isoelectric focusing (pH 5-7). The EF-2 was almost homogeneous since ADP-ribosylation had shifted it into a region of the pH gradient free of contaminating proteins. Diphtheria toxin was immobilized on CNBr-activated Sepharose to prevent a possible contamination by proteins from the diphtheria toxin preparation which might have the same pI as ADP-ribosylated EF-2. Finally, the ADP-ribosyl group was removed by equilibrium dialysis using diphtheria toxin and nicotinamide at pH 6.3. The obtained EF-2 was active in protein synthesis.  相似文献   

7.
Human erythrocyte membrane and purified band 3 were separated initially by isoelectric focusing and then examined in a second dimension by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Band 3 was segregated into three major bands whether the protein was contained within the membranes or was present in the isolated state. The isoelectric points of these major bands were 5.25, 5.35 and 5.70. Of chymotryptic fragments of band 3, the 60-kDa fragment was also separated into three major bands whose pI values were 4.75, 5.10 and 5.30. The multiplicity of band 3 appears to be due to different charges carried by the peptide(s) and is not ascribed to oxidation of band 3 during its preparation. Isoelectric points of the purified 60-kDa fragment were different from the pI values of the fragment coexisting with the complementary 35-kDa fragment, in which case the pI values were exactly the same as those of intact band 3. This suggests that these fragments interact tightly in situ even after being cleaved by chymotrypsin, and the tight interaction must still be present during electrophoresis in the first dimension.  相似文献   

8.
The low molecular weight proteins of rat apo HDL and apo VLDL have been isolated and analyzed by the technique of isoelectric focusing. Sephadex fractions from apo HDL (HS-3) and apo VLDL (VS-3) that contain these proteins reveal three major bands with apparent isoelectric points of pH 4.50, 4.67, and 4.74, as well as three minor bands at pH 4.43, 4.57, and 4.61. In addition, apo HDL has a major band at pI of 4.83. DEAE-Cellulose chromatography was used to prepare purified fractions of these components that were characterized by N-terminal analyses and molecular weight determinantions by SDS gel electrophoresis. The major low molecular weight components of apo HDL were focused on a slab gel and the bands were identified as A-II (pI 4.83), C-II (pI 4.74), C-III-0 (pI 4.67), and C-III-3 (pI 4.50). Neuraminidase treatment of apo HDL, followed by isoelectric focusing, suggested that the other bands, which have not previously been reported, may be additional forms of the C-III protein, differing only in their content of sialic acid.  相似文献   

9.
Gc-globulin or group-specific component, also known as the vitamin D-binding protein, was investigated by the combined use of electrofocusing and immunofixation. Serum of the Gc 2-2 type was found to contain a single protein band whereas serum of the Gc 1-1 type shows two bands with a lower isoelectric point. The Gc 1-2 type contains all three bands known as Gc-2 (pI 5.10), Gc-1Slow (pI 5.03), and Gc-1Fast (pI 4.95). Each apoprotein shows an anodal shift of about 0.07 pH unit after incubation with an excess of 25-hydroxycholecalciferol. After treatment with sialidase Gc-1Fast focuses in the position of Gc-1Slow, whereas the position of Gc-2 remains unchanged.  相似文献   

10.
Osteosarcoma cells grown in normal culture medium secrete bone gamma-carboxyglutamic acid protein (BGP, osteocalcin) which is identical with BGP purified from the bone matrix. Two tests indicate that the secreted medium protein contains the full complement of three gamma-carboxyglutamate residues present on BGP purified from the bone matrix. First, the secreted protein from ROS 17/2 and bone matrix BGP have identical isoelectric points (pI = 4.0). Second, they have identical hydroxyapatite binding behavior. If warfarin is added to the culture medium, the secreted protein has a higher isoelectric point (pI = 4.6) and a lower affinity for hydroxyapatite characteristic of thermally decarboxylated or non-gamma-carboxylated BGP. The observed shift in isoelectric point of secreted BGP after warfarin treatment from pH 4.0 to 4.6 is also reflected in the presence of pI = 4.1 and pI = 4.6 species intracellularly. These isoelectric species correspond to fully carboxylated BGP and noncarboxylated BGP, which are in the process of secretion. Addition of 10 micrograms/ml of warfarin causes a specific 47% reduction in secretion rate of BGP, while at the same time, the intracellular BGP concentration increases 3-fold. These phenomena appear related to the interruption by warfarin of the normal sequence of processing of precursor BGP proteins, as a new, immunoreactive species with a higher isoelectric pH not present in control cells appears to be responsible for the increased intracellular antigen within warfarin-treated cells. Our results show that vitamin K-dependent processing is important for normal secretion of BGP from the cell.  相似文献   

11.
The treatment of nonsaturating, neutralizing antibody-poliovirus complexes with papain generally led to the loss of viral neutralization and to the loss of the neutralization-associated change in the isoelectric point (pI) of the virion. Subsequent treatment with anti-immunoglobulin G antibodies restored the neutralization of the virus and the alteration of the viral pI. It appears that, under nonsaturating conditions, poliovirus neutralization by an antibody is dependent upon the ability of the antibody to bivalently attach to the virion. Exceptions are monospecific neutralizing antibodies with an affinity for capsid protein VP3.  相似文献   

12.
Heterogeneity of purified staphylococcal enterotoxin A, obtained from a culture supernatant of Staphylococcus aureus, strain 13N-2909, was demonstrated by isoelectric focusing. The toxin was composed of three immunologically identical fractions with isoelectric points of 6.5, 7.0 and approximately 8.0. Heterogeneity of the toxin was also shown by disc electrophoresis. At pH 8.0 and 9.4 two major bands and a faint minor band were observed, while at pH 4.3 only one band was observed. The faster-moving band for the anode in disc electrophoresis at pH 9.4 was found to correspond with the pI 6.5 component from isoelectric focusing, while the slower-moving band corresponded with the pI 7.0 component. From the results of the electrophoretic migration tests of the toxin, the components corresponding to the two major bands found in disc electrophoresis at pH 9.4 were considered to be charge isomers.  相似文献   

13.
By analyzing antibody heterogeneity during the primary immune response to bacterial a-amylase (B alpha A) in high-responder F1 hybrid mice between C57BL/6 (B6) and C3H/He (C3) mice with the use of isoelectric focusing (IEF), it was shown that the maturation of the primary IgG antibody response consisted of at least two stages. The response of every mouse tested was initiated with the production of specific antibody focused as a limited set of bands in a narrow pH range, and the subsequent rise in antibody titer was associated with the sequential expansion of the spectra involving the appearance of new bands in the pH gradient adjacent to the initial bands. A further rise was accompanied only by intensified staining of the pre-existing bands. These two stages were distinguishable regardless of the antigen dose, although increasing the dose led to widely distributed spectra of focused antibodies and an early shift from the first stage to the second. The sequential expansion of spectra following the appearance of initial antibodies with limited isoelectric point (pI) values was not unique to the anti-BaA antibody response, because similar results were obtained with the antibody response to an immunologically unrelated antigen, Taka-amylase A (TAA). Thus, the appearance of initial antibodies in a limited pH range, overlapping among all F1 hybrids tested, is not a direct reflection of similarity in the determinant specificities of these antibodies among different mice.  相似文献   

14.
We have purified the human low molecular mass cysteine proteinase inhibitor in good yield from amniotic fluid, using ultrafiltration through 100-kDa and 1-kDa cut-off filters, chromatography on Ultrogel AcA 54, and affinity chromatography on alkylated papain-agarose. Approximately 1-4 mg/l of this inhibitor are present in amniotic fluid. The purified inhibitor had an apparent molecular mass of 10.5-12 kDa, as judged by its electrophoretic behavior. Amino acid analysis showed it to be rich in acidic and aliphatic residues and in cysteine. No carbohydrate side-chains could be demonstrated. The purified inhibitor inhibited papain, ficin, cathepsins B, C, and H, the cathepsin B-like enzyme from B16 melanoma cells, and a bovine chromaffin granule enkephalin-converting activity. No inhibition of Ca2-dependent neutral cysteine proteinase, serine- or metallo-proteinases was seen. Analysis of the purified inhibitor by isoelectric focusing revealed 7 major bands with pI values of 7.95, 7.0, 6.7, 6.55, 6.25, 5.5, and 5.2, all of which inhibited papain.  相似文献   

15.
Unlike phenylalanyl-tRNA synthetase from lower eukaryotes, the corresponding enzyme from higher eukaryotes displays a pronounced tendency to associate with ribosomes in vitro. To attempt to uncover the structural features responsible for this difference in behavior, a comparative study of the enzymes purified to homogeneity from sheep liver and yeast was undertaken. The two alpha 2 beta 2-type enzymes displayed remarkably similar subunit molecular masses (71 and 63 kDa for sheep, 74 and 63 kDa for yeast), yet differed markedly in their isoelectric points (8.0 and 5.6 pH units, respectively). Mild tryptic digestion of the enzyme from sheep led to preferential degradation of the 63-kDa beta subunit into two major fragments of 35 and 25 kDa, respectively, with concomitant loss of activity. The isoelectric points of the denatured fragments were found to be distinctly lower than that of the denatured beta subunit, implying that the residues responsible for the basic net charge of the original beta subunit are mainly clustered in a small portion of the polypeptide chain which was excised during proteolysis. Despite their different isoelectric points, the enzymes from yeast and sheep displayed identical requirements for aminoacylation of tRNA at optimal rates. Moreover, the incidence of variations in pH and ionic strength on the kinetic parameters of the two enzymes was indistinguishable. Interpreted in terms of the polyelectrolyte theory, these results support the view that the residues responsible for the basic net charge of the mammalian enzyme are located in a region distal from the active site. It is suggested that the cationic charge of the enzyme allows anchorage to a cellular component carrying negative charges, possibly the ribosome.  相似文献   

16.
Controlled, limited proteolysis of homogeneous calf thymus terminal deoxynucleotidyl transferase (EC 2.7.7.31) using immobilized Staphylococcus aureus V-8 protease results in a low molecular weight form of the enzyme which possesses unaltered catalytic activity. Analysis of the products of limited proteolysis using sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that only the large subunit, β, is modified from a molecular weight of 30,500 to 25,500. The small subunit, α, which has a molecular weight of 9500, is unchanged. A shift in the apparent isoelectric pH of the calf enzyme following proteolysis is observed from pI = 8.2 to 7.8. Both forms of the enzyme are homogeneous in the isoelectric focusing gel system, as determined by coincidence of single protein bands with terminal transferase activity on the gel. The specific activities of cleaved and uncleaved terminal transferase proteins, as well as their thermal stabilities, are comparable. These results suggest that the polypeptide domain involved in terminal transferase enzymatic activity can be probed further by novel methods involving limited proteolysis without concomitant loss in enzymatic function.  相似文献   

17.
Alendé N  Nielsen JE  Shields DC  Khaldi N 《Proteins》2011,79(5):1635-1648
Although important shifts in the isoelectric point of prokaryotic proteins, mainly due to adaptation to environmental pH, have been widely reported, such studies have not covered mammalian proteins, where pH changes may relate to changes in subcellular or tissue compartmentalization. We explored the isoelectric point of the proteome of 13 mammalian species. We detected proteins that have shifted their pI the most among 13 mammalian species, and investigated if these differences reflect adaptations of the orthologous proteins to different conditions. We find that proteins exhibiting a high isoelectric point change are enriched in certain GO terms, including immune defense, and mitochondrial proteins. We show that the shift in pI between orthologous proteins is not strongly associated with the overall rate of protein evolution, nor with protein length. Our results reveal that insertions/deletions are the main reason behind the shift of pI. However, for some proteins we find evidence of selection shifting the pI of the protein through amino acid replacement. Finally, we argue that shifts in pI might relate to the gain of additional activities, such as new interacting partners, in one ortholog as opposed to the other, and may potentially relate to functional differences between mammals.  相似文献   

18.
Human prostate acid phosphatase (EC 3.1.3.2) has been shown to dephosphorylate different phosphoproteins with the maximum rate at pH 4.0-4.5. The activity with phosvitin is distinctly higher than with beta-casein, casein and most of all than with riboflavin-binding protein. The native phosvitin is homogeneous on isoelectric focusing with pI value of 2.1, whereas phosvitin partially dephosphorylated (in about 15%) by the prostate acid phosphatase shows multiple bands with pI values of 3.5 - 6.8 or higher. The phosphate groups bound to serine residues are removed enzymatically twice as fast as phosphothreonine residues. The apparent Km value for phosvitin was 2.4 X 10(-7) M, and is by three orders of magnitude lower than Km of p-nitrophenyl phosphate (2.9 X 10(-4) M). The competitive inhibitors of prostate acid phosphatase, fluoride and L(+)-tartrate, show the same Ki values for phosvitin and p-nitrophenyl phosphate.  相似文献   

19.
Diphtheria toxin contains a trypsin-sensitive region with 3 closely spaced arginines in the sequence (Asn189, Arg190, Val191, Arg192, Arg193, Ser194). Cleavage of the toxin to yield A- and B-fragments ("nicking") appears to occur in a stochastic manner after either of these arginine residues. Isoelectric focusing of A-fragment prepared in vitro showed four bands of varying intensity with pI between 4.5 and 5.0, three of which could be accounted for by the three different cleavage sites. Exposure of cells with surface-bound toxin to pH less than 5.3 induces translocation of A-fragment to a position where it is shielded from external Pronase, presumably in the cytosol. A-fragment translocated in this manner had the same pI as the most acidic A-fragments, indicating that only A-fragments lacking both Arg192 and Arg193 are translocation-competent. This was confirmed by amino acid sequencing. Treatment of A-fragment with carboxypeptidase B eliminated the two bands with the highest pI while there was a concomitant increase in the bands corresponding to the two most acidic A-fragments. Such treatment of nicked diphtheria toxin increased the amount of translocated A-fragment and the ability of toxin to form cation-selective pores in the cell membrane. The site of trypsin cleavage therefore appears to be one of the factors limiting toxin entry to the cytosol.  相似文献   

20.
The mechanism of complexation of pI range 3.5--5 Ampholine to heparin in isoelectric focusing has been explored by the dye-binding technique at different pH values in solution. There is no significant interaction between heparin and Ampholine at pH 6.7. Weak, or selective, binding occurs at pH 5.1, and very strong interaction at pH 3.5. In the latter system, the Ampholine components appear to behave as polycations due to their ordered sequence of positive charges, each two methylene groups apart, which favors a strong binding to polyanions. In addition, there appear to be variable stoichiometries for the strong binding between heparin and Ampholine, depending on their relative amounts. It is proposed that at a low ratio of heparin to Ampholine (Ampholine excess), aggregation is perpendicular to the heparin chain, with the end ammonium charge of each Ampholine molecule neutralizing one negative charge along the heparin molecule; at higher ratios (heparin excess), the bound Ampholine segment is aligned parallel to the heparin molecule, so that on the average one Ampholine component neutralizes approx. three negative charges. The banding of heparin in isoelectric focusing in the pH range 3.0--4.5 can be explained by aggregation of the various components on heparin in amounts dependent upon the net charge on the Ampholine species at the given pH, and upon the changing stoichiometries as a function of the variation in ratio of heparin to Ampholine along the pH gradient. Binding of Ampholine to polygalacturonate was also demonstrated in excess Ampholine in a pH range dependent on the degree of protonation of the carboxyl groups of this acidic polysaccharide as well as on the net positive charge of the Ampholine. The aggregation seen at pH 4.2--4.5 led to the prediction and subsequent demonstration that polygalacturonate would also exhibit binding upon isoelectric focusing. This supports the hypothesis that aggregation of Ampholine on polyanions having sufficient charge density is a general phenomenon which can lead to spurious banding of certain polymers at appropriate pH ranges in isoelectric focusing. On the basis of their behavior in isoelectric focusing at pH 3.0--4.5, strength of aggregation of the polyanions studied appears to be heparin A = heparin B greather than polyglutamate greater than carboxyl-reduced heparin B greater than polygalacturonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号