首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
Wolf U 《Human genetics》1999,105(3):288-292
In mammals, the sex determination system has already been unraveled in considerable detail, and the genes involved are increasingly used to investigate this system in non-mammalian vertebrates. Data available so far indicate that many of the genes identified are involved in this pathway throughout the vertebrate phylum, suggesting that the mechanism of sex determination was essentially conserved in this taxonomic category. However, a rather fundamental difference between mammals and non-mammalian vertebrates is the role of steroid sex hormones which are critical for gonadal differentiation in the latter, while during mammalian evolution an innovation occurred, whereby genes that superseded steroids as factors acting in early gonadogenesis were co-opted to the pathway. An intermediate stage of this evolutionary switch may still be represented by extant marsupials. Referring to the central role of aromatase in steroid-mediated, and of SRY in eutherian gonadal determination/differentiation, it is argued here that the "aromatase system" was replaced by the "SRY system" as a prerequisite for the evolution of placentation. It is proposed that in co-evolution with placentation, new specificities and extensions of the pleiotropic spectrum of sex-determining genes have appeared. The evolutionary innovation of placentation may thus have been materialized by reorganization of the sex-determining system whereby genes were recruited at the top of the pathway and genes at the bottom remained rather conservative but became increasingly pleiotropic.  相似文献   

2.
3.
Mammalian sex determination and gonad differentiation are the result of a complex interaction of fine-tuned spatial and temporal gene expression with threshold levels of individual genes. The male pathway is initiated by SRY. Some exceptional mammals determine male sex without the SRY gene and even without a Y chromosome. Ellobius lutescens in this report is one example of this "weird" species. We provide key data on the genomic level that there are no coarse differences in the genomes of male and female animals by comparative genomic hybridization. On the gene level we studied the gene Nr5a1 for the orphan nuclear receptor, steroidogenic factor SF-1, a central constituent for gonad differentiation and adrenal gland development. The Ellobius lutescens Nr5a1 gene was mapped to the proximal short arm of chromosome 2 by fluorescence in situ hybridization. In addition, we provide evidence by linkage analysis in two E. lutescens pedigrees that Nr5a1 is not the key male sex-determining gene in Ellobius lutescens.  相似文献   

4.
哺乳动物性别分化调控的分子机制的研究特别是性别分化的层次调控、剂量补偿和性染色体进化这三个领域,已取得快速进展。已经发现Y染色体性别决定区基因(SRY)、X染色体DSS-AHC决定区基因1(DAX-1)、甾类生成因子1基因(SF1)和Wilms瘤抑制基因(WT-1)等与哺乳动物性别决定有关。SRY启动睾丸分化,但胚胎发育成雄性的其余步骤由事丸分泌的激素控制。DAX-1且编码一种女性特异功能的蛋白质,它在男性中被SRY所抑制。SF-1和WT-1在SRY开启之前作用于性腺和肾上腺发育的启动。哺乳动物通过随机失活雌性两条X染色体中的一条来使X连锁的基因在两性间的表达水平达到平衡(剂量补偿)。X染色体失活由X染色体失活中心(XIC)控制。失活的X染色体专一转录基因(XIST)是XIC的强烈候选者,它可能参与X失活的启动。对有袋目和单孔目动物性染色体的研究为我们提供了其进化的信息。有证据支持性染色体起源于一对同源常染色体,而SRY的祖先基因可能是SOX-3。  相似文献   

5.
The classical concept of sex determination in mammals is that a Y chromosomal gene controls the development of the indifferent gonad into a testis. Subsequent divergence of sexual phenotypes is secondary to this gonadal determination. The most likely candidate gene is SRY (sex-determining region Y) in humans, and Sry in mouse. However, several lines of evidence indicate that sexual dimorphism occurs even before the indifferent gonad appears. Here we present evidence that bovine male embryos generally develop to more advanced stages than do females during the first 8 days after insemination in vitro. Corresponding relationships between both cell numbers and mitotic indices and sex were also seen. Although it is not clear whether this phenomenon involves factors originating before or after fertilization, these findings suggest that sex-related gene expression affects the development of embryos soon after activation of the embryonic genome and well before gonadal differentiation.  相似文献   

6.
7.
8.
部分水产养殖动物性别控制基因的研究进展   总被引:3,自引:0,他引:3  
动物的性别是受遗传或环境等因素控制的。自从在哺乳动物中发现了性别决定基因SRY后,还发现了许多其他与性别控制和性腺发育相关的基因。由于海水养殖动物的性别控制技术在遗传育种和生产中十分重要,因此利用现代分子生物技术研究性别控制的基因成为热点。本文综述了鱼类、锯缘青蟹、海龟和海胆等水产养殖动物性别控制基因的研究进展。  相似文献   

9.
SRY and the standoff in sex determination   总被引:3,自引:0,他引:3  
SRY was identified as the mammalian sex-determining gene more than 15 yr ago and has been extensively studied since. Although many of the pathways regulating sexual differentiation have been elucidated, direct downstream targets of SRY are still unclear, making a top down approach difficult. However, recent work has demonstrated that the fate of the gonad is actively contested by both male-promoting and female-promoting signals. Sox9 and Fgf9 push gonads towards testis differentiation. These two genes are opposed by Wnt4, and possibly RSPO1, which push gonads toward ovary differentiation. In this review, we will discuss the history of the field, current findings, and exciting new directions in vertebrate sex determination.  相似文献   

10.
11.
Sex Determination in Reptiles: An Update   总被引:1,自引:1,他引:0  
Sex determination and sex differentiation are two separate butrelated phenomena. Sex differentiation is a programmed cascadeof events in which the indifferent gonad develops as a testisor an ovary with the appropriate urogenital and secondary sexcharacters. Sex determination is the event that sets this cascadein motion. In placental mammals, there is good evidence thatsex is determined by a gene on the Y chromosome (SRY) that initiatestestis formation. In the absence of SRY an ovary develops. Thereare, however, examples of placental mammal that develop as normalmales with no detectable SRY. In reptiles, sex differentiationappears to be similar to mammals (i.e., the same genes and hormonesact ina similar manner), but sex determination is clearly verydifferent. Ovarian differentiation in placental mammals canoccur in the absence of estrogen or an estrogen receptor. Ovariandifferentiation in reptiles requires the presence of estrogen.In the absence of estrogen a testis develops. In TSD reptiles,embryos will develop as females when treated with estrogen evenif eggs are incubated at male-inducing temperatures, and conversely,will develop as males when estrogen synthesis is blocked ineggs incubated at female-inducing temperatures. A number ofother genes have also been shown to be important in mammaliansex determination. One of these genes, Sox9, which is expressedin differentiating mouse testis, has recently been found tobe expressed in embryonic reptile testis. Other genes that appearto be common to both mammals and reptiles in the sex determiningcascade are SF- 1, MIH, and possibly DAX-1. Current researchis now focused on how the gene that produces the enzyme necessaryfor estrogen synthesis (aromatase) is regulated in the embryosof reptiles with genetic or environmental sex determination.Controversial issues in reptilian sex determination are 1) therole of the brain in gonadal sex determination, and 2) the roleof steroid hormones in the yolk prior to sex determination  相似文献   

12.
Since the discovery of SRY/SRY as a testis-determining gene on the mammalian Y chromosome in 1990, extensive studies have been carried out on the immediate target of SRY/SRY and genes functioning in the course of testis development. Comparative studies in non-mammalian vertebrates including birds have failed to find a gene equivalent to SRY/SRY, whereas they have suggested that most of the downstream factors found in mammals including SOX9 are also involved in the process of gonadal differentiation. Although a gene whose function is to trigger the cascade of gene expression toward gonadal differentiation has not been identified yet on either W or Z chromosomes of birds, a few interesting genes have been found recently on the sex chromosomes of chickens and their possible roles in sex determination or sex differentiation are being investigated. It is the purpose of this review to summarize the present knowledge of these sex chromosome-linked genes in chickens and to give perspectives and point out questions concerning the mechanisms of avian sex determination.  相似文献   

13.
14.
15.
16.
Three sex-determining (SD) genes, SRY (mammals), Dmy (medaka), and DM-W (Xenopus laevis), have been identified to date in vertebrates. However, how and why a new sex-determining gene appears remains unknown, as do the switching mechanisms of the master sex-determining gene. Here, we used positional cloning to search for the sex-determining gene in Oryzias luzonensis and found that GsdfY (gonadal soma derived growth factor on the Y chromosome) has replaced Dmy as the master sex-determining gene in this species. We found that GsdfY showed high expression specifically in males during sex differentiation. Furthermore, the presence of a genomic fragment that included GsdfY converts XX individuals into fertile XX males. Luciferase assays demonstrated that the upstream sequence of GsdfY contributes to the male-specific high expression. Gsdf is downstream of Dmy in the sex-determining cascade of O. latipes, suggesting that emergence of the Dmy-independent Gsdf allele led to the appearance of this novel sex-determining gene in O. luzonensis.  相似文献   

17.
The vertebrate gonad develops from the intermediate mesoderm as an initially bipotential organ anlage, the genital ridge. In mammals, Sry acts as a genetic switch towards testis development. Sox9 has been shown to act downstream of Sry in testis development, while Dax1 appears to counteract Sry. Few more genes have been implicated in early gonad development. However, the genetic networks controlling early differentiation events in testis and ovary are still far from being understood. In order to provide a broader basis for the molecular analysis of gonad development, high-throughput gene expression analysis was utilized to identify genes specifically expressed in the gonad. In total, among 138 genes isolated which showed tissue specific expression in the embryo, 79 were detected in the developing gonad or sex ducts. Twenty-seven have not been functionally described before, while 40 represent known genes and 12 are putative mouse orthologues. Forty-five of the latter two groups (86%) have not been described previously in the fetal gonad. In addition, 21 of the gonad specific genes showed sex-dimorphic expression suggesting a role in sex determination and/or gonad differentiation. Eighteen of the latter (86%) have not been described previously in the fetal gonad. In total we provide new data on 72 genes which may play a role in gonad or sex duct development and/or sex determination. Thus we have generated a large gene resource for the investigation of these processes, and demonstrate the suitability of high-throughput gene expression screening for the genetic analysis of organogenesis.  相似文献   

18.
The human sex-determining gene SRY is a direct target of WT1   总被引:5,自引:0,他引:5  
The product of the Wilms' tumor gene, WT1, is essential for male sex determination and differentiation in mammals. In addition to causing Wilms' tumor, mutations in WT1 often cause two distinct but overlapping urogenital defects in men, Denys-Drash syndrome and Frasier syndrome. In this study we investigated the regulation of the sex determination gene SRY by WT1. Our results showed that WT1 up-regulates the SRY gene through the proximal early growth response gene-1-like DNA-binding sequences in the core promoter. Mutant WT1 proteins in Denys-Drash syndrome patients were unable to activate this promoter. These mutants did not act in a dominant negative manner, as expected over the wild-type WT1 in this promoter. We also found that WT1 could transactivate the endogenous SRY gene. These observations, together with the overlapping expression patterns of WT1 and SRY in human gonads, led us to propose that WT1 regulates SRY in the initial sex determination process in humans and activates a cascade of genes ultimately leading to the complete organogenesis of the testis.  相似文献   

19.
A sex-determining gene, DMY, which is comparable to the SRY gene in mammals, has been identified in the medaka, Oryzias latipes. Although Oryzias curvinotus, a closely related species to O. latipes also has DMY, this gene has not been found in other Oryzias fishes. It has recently been demonstrated that the sex chromosomes of Oryzias dancena and Oryzias hubbsi differ from those of O. latipes and these species have XX/XY and ZZ/ZW systems, respectively. This may suggest that Oryzias species have evolved different sex-determining genes on different sex chromosomes. In the present study, we investigated the sex determination mechanism in Oryzias minutillus, which is closely related to O. dancena and O. hubbsi. Linkage analysis using 14 isolated sex-linked DNA markers showed that this species has an XX/XY sex determination system. These sex-linked markers were located on linkage group 8 of O. latipes, suggesting that the sex chromosomes of O. minutillus are homologous to the autosomes of other Oryzias species. Furthermore, fluorescence in situ hybridization using a tightly sex-linked marker demonstrated that the XY sex chromosomes of O. minutillus and O. dancena were not homologous. These findings provide additional evidence for independent origins of sex chromosomes and sex-determining genes in these closely related species.  相似文献   

20.
Molecular cloning and expression in gonad of Rana rugosa WT1 and Fgf9   总被引:2,自引:0,他引:2  
Sry (sex-determining region on the Y chromosome) is required for testicular differentiation in mammals. In addition to Sry, other genes such as WT1, Fgf9, Dax1, Dmrt1 and Sox9 are widely accepted to be involved in the sex determination in vertebrates. However, the roles of these genes during sex determination still remain unclear in amphibians. This study was undertaken to examine the expression of WT1 and Fgf9 in the developing gonad of amphibians. We first isolated the WT1 cDNA from the frog Rana rugosa. Like WT1 in mice, R. rugosa WT1 showed 2 isoforms; i.e., one had an additional 3 amino acids, KTS, included between the third and fourth zinc fingers. However, 17 amino acids in exon 5 of mammalian WT1 could not be found in R. rugosa WT1, which is also the case in turtle and chicken. The mRNA of both isoforms (+KTS, -KTS) was detected in the lung, kidney and testis, but not in the ovary and muscle of adult frogs. The 2 isoforms were expressed first in the embryos at stage 23. Thereafter, the expressions remained constant in the gonad attached to mesonephros of both sexes during sex determination. We next isolated the R. rugosa Fgf9 cDNA encoding 208 amino acids. The amino acid sequence of Fgf9 had similarity greater than 92% with chicken, mouse and human Fgf9s, suggesting that Fgf9 is highly conserved among vertebrate classes. Fgf9 was expressed in the ovary of an adult frog strongly, but in the lung weakly. In contrast, the Fgf9 mRNA was hardly detected in the kidney, testis and muscle. Moreover, Fgf9 did not show a sexually dimorphic expression pattern during sex determination in R. rugosa. The results, taken together, suggest that both WT1 and Fgf9 are expressed in the indifferent gonad prior to sex determination without any difference in the expression between males and females. Thus, it seems unlikely that they are a key factor to initiate the divergence leading to testicular or ovarian differentiation in R. rugosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号