首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methotrexate-resistant forms of human dihydrofolate reductase have the potential to protect healthy cells from the toxicity of methotrexate (MTX), to improve prognosis during cancer therapy. It has been shown that synergistic MTX-resistance can be obtained by combining two active-site mutations that independently confer weak MTX-resistance. In order to obtain more highly MTX-resistant human dihydrofolate reductase (hDHFR) variants for this application, we used a semi-rational approach to obtain combinatorial active-site mutants of hDHFR that are highly resistant towards MTX. We created a combinatorial mutant library encoding various amino acids at residues Phe31, Phe34 and Gln35. In vivo library selection was achieved in a bacterial system on medium containing high concentrations of MTX. We characterized ten novel MTX-resistant mutants with different amino acid combinations at residues 31, 34 and 35. Kinetic and inhibition parameters of the purified mutants revealed that higher MTX-resistance roughly correlated with a greater number of mutations, the most highly-resistant mutants containing three active site mutations (Ki(MTX)=59-180 nM; wild-type Ki(MTX)<0.03 nM). An inverse correlation was observed between resistance and catalytic efficiency, which decreased mostly as a result of increased KM toward the substrate dihydrofolate. We verified that the MTX-resistant hDHFRs can protect eukaryotic cells from MTX toxicity by transfecting the most resistant mutants into DHFR-knock-out CHO cells. The transfected variants conferred survival at concentrations of MTX between 100-fold and >4000-fold higher than the wild-type enzyme, the most resistant triple mutant offering protection beyond the maximal concentration of MTX that could be included in the medium. These highly resistant variants of hDHFR offer potential for myeloprotection during administration of MTX in cancer treatment.  相似文献   

2.
Ex vivo selection of transduced hematopoietic stem cells (HSC) with drug-resistance genes offers the possibility to enrich transduced cells prior to engraftment, toward increased reconstitution in transplant recipients. We evaluated the potential of highly methotrexate (MTX)-resistant variants of human dihydrofolate reductase (hDHFR) for this application. Two subsets of hDHFR variants with reduced affinity for MTX that had been previously identified in a bacterial system were considered: those with substitutions at positions 31, 34, and/or 35, and those with substitutions at position 115. The variants were characterized for their resistance to pemetrexed (PMTX), an antifolate that is related to MTX. We observed a strong correlation between decreased binding to both antifolates, although the identity of specific sequence variations modulated the correlation. We chose a subset of hDHFR variants for tests of ex vivo MTX resistance, taking into consideration their residual specific activity and their decrease in affinity for the related antifolates. Murine myeloid progenitors and other differentiated hematopoietic cells were transduced and exposed to MTX in a nucleotide-free medium. Bone marrow (BM) cells including 15% cells infected with F31R/Q35E were enriched to 98% transduced cells within 6 days of ex vivo selection. hDHFR variant F31R/Q35E allowed a strong ex vivo enrichment upon a short exposure to MTX relative to a less resistant variant of hDHFR, L22Y. We have thus demonstrated that bacterial selection of highly antifolate-resistant hDHFR variants can provide selectable markers for rapid ex vivo enrichment of hematopoietic cells.  相似文献   

3.
Enzyme I of the bacterial phosphoenolpyruvate:sugar phosphotransferase system can be phosphorylated by PEP on an active-site histidine residue, localized to a cleft between an alpha-helical domain and an alpha/beta domain on the amino terminal half of the protein. The phosphoryl group on the active-site histidine can be passed to an active-site histidine residue of HPr. It has been proposed that the major interaction between enzyme I and HPr occurs via the alpha-helical domain of enzyme I. The isolated recombinant alpha-helical domain (residues 25-145) with approximately 80% alpha-helices as well as enzyme I deficient in that domain [EI(DeltaHD)] with approximately 50% alpha-helix content from M. capricolum were used to further elucidate the nature of the enzyme I-HPr complex. Isothermal titration calorimetry demonstrated that HPr binds to the alpha-helical domain and intact enzyme I with = 5 x 10(4) and 1.4 x 10(5) M(-)(1) at pH 7.5 and 25 degrees C, respectively, but not to EI(DeltaHD), which contains the active-site histidine of enzyme I and can be autophosphorylated by PEP. In vitro reconstitution experiments with proteins from both M. capricolum and E. coli showed that EI(DeltaHD) can donate its bound phosphoryl group to HPr in the presence of the isolated alpha-helical domain. Furthermore, M. capricolum recombinant C-terminal domain of enzyme I (EIC) was shown to reconstitute phosphotransfer activity with recombinant N-terminal domain (EIN) approximately 5% as efficiently as the HD-EI(DeltaHD) pair. Recombinant EIC strongly self-associates ( approximately 10(10) M(-)(1)) in comparison to dimerization constants of 10(5)-10(7) M(-)(1) measured for EI and EI(DeltaHD).  相似文献   

4.
Cytochrome P450 BM-3 (CYP102) catalyzes the subterminal hydroxylation of fatty acids with a chain length of 12–22 carbons. The paper focuses on the regioselectivity and substrate specificity of the purified wild-type enzyme and five mutated variants towards caprylic, capric, and lauric acid. The enzymes were obtained by random mutagenic fine-tuning of the mutant F87A(LARV). F87A(LARV) was selected as the best enzyme variant in a previous study in which the single mutant F87A was subjected to rational evolution to achieve hydroxylation activity for short chain length substrates using a p-nitrophenolate-based spectrophotometric assay.

The best mutants, F87V(LAR) and F87V(LARV), show a higher catalytic activity towards ω-(p-nitrophenoxy)decanoic acid (10-p-NCA) than F87A(LARV). In addition, they proved capable of hydroxylating ω-(p-nitrophenoxy)octanoic acid (8-p-NCA) which the wild-type enzyme is unable to do. Both variants catalyzed hydroxylation of capric acid, which is not a substrate for the wild-type, with a conversion rate of up to 57%. The chain length specificity of the mutants in fatty acid hydroxylation processes shows a good correlation with their activity towards p-NCA pseudosubstrates. The p-NCA assay therefore, allows high-throughput screening of large mutant libraries for the identification of enzyme variants with the desired catalytic activity towards fatty acids as the natural substrates.  相似文献   


5.
Dipeptidyl peptidase III (DPP III), a member of the metallopeptidase family M49, was considered as an exclusively eukaryotic enzyme involved in intracellular peptide catabolism and pain modulation. In 2003, new data on genome sequences revealed the first prokaryotic orthologs, which showed low sequence similarity to eukaryotic ones and a cysteine (Cys) residue in the zinc-binding motif HEXXGH. Here we report the cloning and heterologous expression of DPP III from the human gut symbiont Bacteroides thetaiotaomicron. The catalytic efficiency of bacterial DPP III for preferred synthetic substrate hydrolysis was very similar to that of the human host enzyme. Substitution of Cys450 from the active-site motif by serine did not substantially change the enzymatic activity. However, this residue was wholly responsible for the inactivation effect of sulfhydryl reagents. Molecular modeling indicated seven basic amino acid residues in the local environment of Cys450 as a possible cause for its high reactivity. Sequence analysis of 81 bacterial M49 peptidases showed conservation of the HECLGH motif in 68 primary structures with the majority of proteins lacking an active-site Cys originated from aerobic bacteria. Data obtained suggest that Cys450 of B. thetaiotaomicron DPP III is a regulatory residue for the enzyme activity.  相似文献   

6.
Dihydrofolate reductase (DHFR) and thymidylate synthase (TS) activities are associated with a 285,000 molecular weight enzyme complex in carrot (Daucus carota L.). Selection for methotrexate (MTX) resistance by stepwise increase of the concentration of MTX results in a high frequency adaptation to MTX with little or no significant increase in DHFR activity. However, when as a second step following MTX selection a specific inhibitor of TS, 5-fluoro-2-deoxyuridine was used, DHFR overproducer lines were obtained. The overproduction phenotype of the lines was almost completely lost after 8 weeks of growth in the absence of selection pressure. Although DHFR and TS are independent gene products, their activities increase in proportion (~20-fold) in the overproducer lines. This strongly suggests that DHFR and TS are not only functionally and physically linked in the same enzyme complex, but also are coregulated. These cell lines resemble the MTX-induced DHFR overproducer amplified cell lines of mammalian origin in their mode of selection, high frequency of appearance, elevated enzyme activity, and increased specific mRNA levels.  相似文献   

7.
The reaction of a novel active-site-directed phospholipase A1 inhibitor with the outer-membrane phospholipase A (OMPLA) was investigated. The inhibitor 1-p-nitrophenyl-octylphosphonate-2-tridecylcarbamoyl-3-et hanesulfonyl -amino-3-deoxy-sn-glycerol irreversibly inactivated OMPLA. The inhibition reaction did not require the cofactor calcium or an unprotonated active-site His142. The inhibition of the enzyme solubilized in hexadecylphosphocholine micelles was characterized by a rapid (t1/2 = 20 min) and complete loss of enzymatic activity, concurrent with the covalent modification of 50% of the active-site serines, as judged from the amount of p-nitrophenolate (PNP) released. Modification of the remaining 50% occurred at a much lower rate, indicative of half-of-the-sites reactivity against the inhibitor of this dimeric enzyme. Inhibition of monomeric OMPLA solubilized in hexadecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate resulted in an equimolar monophasic release of PNP, concurrent with the loss of enzymatic activity (t1/2 = 14 min). The half-of-the-sites reactivity is discussed in view of the dimeric nature of this enzyme.  相似文献   

8.
Nitroblue tetrazolium (NBT) in the presence of phenazine methosulfate (PMS) reacts with the NADPH produced by dehydrogenases to produce an insoluble blue-purple formazan. Endpoint assays taking advantage of this reaction have been successfully used to detect the activity of several dehydrogenases. Here we present a version of this assay suitable for determining the kinetics of 6-phosphogluconate dehydrogenase catalysis in crude lysates of bacterial cells prepared in 96-well plates. Using the assay to screen a small library of variant 6-phosphogluconate dehydrogenases generated by error-prone polymerase chain reaction, we were able to identify three variants with improved activity and thermostability over the parent enzyme. These enzymes were partially purified and shown to be expressed at higher levels than the parent (leading to the increase in activity), and all three variants were indeed more thermostable than the parent (temperature midpoints 4-7 degrees C higher) after purification. Thus the NBT-PMS assay appears suitable for screening libraries of variant dehydrogenases.  相似文献   

9.
Phosphotransacetylase (EC 2.3.1.8) catalyzes the reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA): CH(3)COOPO(3)(2-) + CoASH <==> CH(3)COSCoA + HPO(4)(2-). The role of arginine residues was investigated for the phosphotransacetylase from Methanosarcina thermophila. Kinetic analysis of a suite of variants indicated that Arg 87 and Arg 133 interact with the substrate CoA. Arg 87 variants were reduced in the ability to discriminate between CoA and the CoA analog 3'-dephospho-CoA, indicating that Arg 87 forms a salt bridge with the 3'-phosphate of CoA. Arg 133 is postulated to interact with the 5'-phosphate of CoA. Large decreases in k(cat) and k(cat)/K(m) for all of the Arg 87 and Arg 133 variants indicated that these residues are also important, although not essential, for catalysis. Large decreases in k(cat) and k(cat)/K(m) were also observed for the variants in which lysine replaced Arg 87 and Arg 133, suggesting that the bidentate interaction of these residues with CoA or their greater bulk is important for optimal activity. Desulfo-CoA is a strong competitive inhibitor of the enzyme, suggesting that the sulfhydryl group of CoA is important for the optimization of CoA-binding energy but not for tight substrate binding. Chemical modification of the wild-type enzyme by 2,3-butanedione and substrate protection by CoA indicated that at least one reactive arginine is in the active site and is important for activity. The inhibition pattern of the R87Q variant indicated that Arg 87 is modified, which contributes to the inactivation; however, at least one additional active-site arginine is modified leading to enzyme inactivation, albeit at a lower rate.  相似文献   

10.
Sequence variability associated with human immunodeficiency virus type 1 (HIV-1) is useful for inferring structural and/or functional constraints at specific residues within the viral protease. Positions that are invariant even in the presence of drug selection define critically important residues for protease function. While the importance of conserved active-site residues is easily understood, the role of other invariant residues is not. This work focuses on invariant Thr80 at the apex of the P1 loop of HIV-1, HIV-2, and simian immunodeficiency virus protease. In a previous study, we postulated, on the basis of a molecular dynamics simulation of the unliganded protease, that Thr80 may play a role in the mobility of the flaps of protease. In the present study, both experimental and computational methods were used to study the role of Thr80 in HIV protease. Three protease variants (T80V, T80N, and T80S) were examined for changes in structure, dynamics, enzymatic activity, affinity for protease inhibitors, and viral infectivity. While all three variants were structurally similar to the wild type, only T80S was functionally similar. Both T80V and T80N had decreased the affinity for saquinavir. T80V significantly decreased the ability of the enzyme to cleave a peptide substrate but maintained infectivity, while T80N abolished both activity and viral infectivity. Additionally, T80N decreased the conformational flexibility of the flap region, as observed by simulations of molecular dynamics. Taken together, these data indicate that HIV-1 protease functions best when residue 80 is a small polar residue and that mutations to other amino acids significantly impair enzyme function, possibly by affecting the flexibility of the flap domain.  相似文献   

11.
Amylosucrase is a glucosyltransferase belonging to family 13 of glycoside hydrolases and catalyses the formation of an amylose-type polymer from sucrose. Its potential use as an industrial tool for the synthesis or the modification of polysaccharides, however, is limited by its low catalytic efficiency on sucrose alone, its low stability, and its side reactions resulting in sucrose isomer formation. Therefore, combinatorial engineering of the enzyme through random mutagenesis, gene shuffling, and selective screening (directed evolution) was started, in order to generate more efficient variants of the enzyme. A convenient zero background expression cloning strategy was developed. Mutant gene libraries were generated by error-prone polymerase chain reaction (PCR), using Taq polymerase with unbalanced dNTPs or Mutazyme™, followed by recombination of the PCR products by DNA shuffling. A selection method was developed to allow only the growth of amylosucrase active clones on solid mineral medium containing sucrose as the sole carbon source. Automated protocols were designed to screen amylosucrase activity from mini-cultures using dinitrosalicylic acid staining of reducing sugars and iodine staining of amylose-like polymer. A pilot experiment using the described mutagenesis, selection, and screening methods yielded two variants with significantly increased activity (five-fold under the screening conditions). Sequence analysis of these variants revealed mutations in amino acid residues which would not be considered for rational design of improved amylosucrase variants. A method for the characterisation of amylosucrase action on sucrose, consisting of accurate measurement of glucose and fructose concentrations, was introduced. This allows discrimination between hydrolysis and transglucosylation, enabling a more detailed comparison between wild-type and mutant enzymes.  相似文献   

12.
The bacterial surface display method was used to selectively screen for improved variants of carboxymethyl cellulase (CMCase). A library of mutated CMCase genes generated by DNA shuffling was fused to the ice nucleation protein (Inp) gene so that the resulting fusion proteins would be displayed on the bacterial cell surface. Some cells displaying mutant proteins grew more rapidly on carboxymethyl cellulose plates than controls, forming heterogeneous colonies. In contrast, cells displaying the nonmutated parent CMCase formed uniform tiny colonies. These variations in growth rate were assumed to result from altered availability of glucose caused by differences in the activity of variant CMCases at the cell surface. Staining assays indicate that large, rapidly growing colonies have increased CMCase activity. Increased CMCase activity was confirmed by assaying the specific activities of cell extracts after the expression of unfused forms of the variant genes in the cytoplasm. The best-evolved CMCases showed about a 5- and 2.2-fold increase in activity in the fused and free forms, respectively. Sequencing of nine evolved CMCase variant genes showed that most amino acid substitutions occurred within the catalytic domain of the enzyme. These results demonstrate that the bacterial surface display of enzyme libraries provides a direct way to correlate evolved enzyme activity with cell growth rates. This technique will provide a useful technology platform for directed evolution and high-throughput screening of industrial enzymes, including hydrolases.  相似文献   

13.
The bacterial surface display method was used to selectively screen for improved variants of carboxymethyl cellulase (CMCase). A library of mutated CMCase genes generated by DNA shuffling was fused to the ice nucleation protein (Inp) gene so that the resulting fusion proteins would be displayed on the bacterial cell surface. Some cells displaying mutant proteins grew more rapidly on carboxymethyl cellulose plates than controls, forming heterogeneous colonies. In contrast, cells displaying the nonmutated parent CMCase formed uniform tiny colonies. These variations in growth rate were assumed to result from altered availability of glucose caused by differences in the activity of variant CMCases at the cell surface. Staining assays indicate that large, rapidly growing colonies have increased CMCase activity. Increased CMCase activity was confirmed by assaying the specific activities of cell extracts after the expression of unfused forms of the variant genes in the cytoplasm. The best-evolved CMCases showed about a 5- and 2.2-fold increase in activity in the fused and free forms, respectively. Sequencing of nine evolved CMCase variant genes showed that most amino acid substitutions occurred within the catalytic domain of the enzyme. These results demonstrate that the bacterial surface display of enzyme libraries provides a direct way to correlate evolved enzyme activity with cell growth rates. This technique will provide a useful technology platform for directed evolution and high-throughput screening of industrial enzymes, including hydrolases.  相似文献   

14.
Hypophosphatasia (HOPS) is a clinically heterogeneous heritable disorder characterized by defective skeletal mineralization, deficiency of tissue-nonspecific alkaline phosphatase (TNSALP) activity, and premature loss of deciduous teeth. To date, various mutations in the TNSALP gene have been identified. Especially, A115V located in exon 5 has been detected in a Japanese patient with severe periodontitis and adult-type HOPS. In this study, we have characterized the protein translated from the mutant A115V gene. Wild-type and A115V mutant-type TNSALP cDNA expression vector pcDNA3 have been constructed and transfected to COS-1 cells by lipofectin technique. After 48-h transfection, the cells were subjected to assay ALP activity. In order to identify possible dominant effect of the mutation, we performed co-transfections of wild-type and mutated cDNA, and evaluated the residual activities of each mutation. Detection of TNSALP synthesized by COS-1 cells transfected with the wild- or the mutated-type was also performed by using an immunofluorescent method. ALP activity of cell transfected with the mutant cDNA (A115V) plasmid after 48-h transfection exhibited 0.399+/-0.021 U/mg. As the enzymatic activity of the wild type was taken as 100%, the value of the mutant was estimated as 16.9%. When co-transfected this mutant showed no inhibition of the wild-type enzyme. TNSALP in COS-1 cells with transfected with the mutant exhibited strong fluorescence at the surface of cells as wild-type. This study indicated that the mutant (A115V) TNSALP gene produced the defective ALP enzyme and it could be recessively transmitted and be a disease-causing mutation of the adult-type hypophosphatasia.  相似文献   

15.
Unlike the heme cd(1)-based nitrite reductase enzymes, the molecular mechanism of copper-containing nitrite reductases remains controversial. A key source of controversy is the productive binding mode of nitrite in the active site. To identify and characterize the molecular determinants associated with nitrite binding, we applied a combinatorial mutagenesis approach to generate a small library of six variants at position 257 in nitrite reductase from Alcaligenes faecalis S-6. The activities of these six variants span nearly two orders of magnitude with one variant, I257V, the only observed natural substitution for Ile257, showing greater activity than the native enzyme. High-resolution (> 1.8 A) nitrite-soaked crystal structures of these variants display different modes of nitrite binding that correlate well with the altered activities. These studies identify for the first time that the highly conserved Ile257 in the native enzyme is a key molecular determinant in directing a catalytically competent mode of nitrite binding in the active site. The O-coordinate bidentate binding mode of nitrite observed in native and mutant forms with high activity supports a catalytic model distinct from the heme cd(1) NiRs. (The atomic coordinates for I257V[NO(2)(-)], I257L[NO(2)(-)], I257A[NO(2)(-)], I257T[NO(2)(-)], I257M[NO(2)(-)] and I257G[NO(2)(-)] AfNiR have been deposited in the Protein Data Bank [PDB identification codes are listed in Table 2].)  相似文献   

16.
Conformational inversion occurs 7-8kcal/mol more readily in furanoses than pyranoses. This difference is exploited here to probe for active-site residues involved in distorting pyranosyl substrate toward reactivity. Spontaneous glycoside hydrolysis rates are ordered 4-nitrophenyl-α-l-arabinofuranoside (4NPA)>4-nitrophenyl-β-d-xylopyranoside (4NPX)>xylobiose (X2). The bifunctional β-d-xylosidase/α-l-arabinofuranosidase exhibits the opposite order of reactivity, illustrating that the enzyme is well equipped in using pyranosyl groups of natural substrate X2 in facilitating glycoside hydrolysis. Probing the roles of all 17 active-site residues by single-site mutation to alanine and by changing both moieties of substrate demonstrates that the mutations of subsite -1 residues decrease the ratio k(cat)(4NPX/4NPA), suggesting that the native residues support pyranosyl substrate distortion, whereas the mutations of subsite +1 and the subsite -1/+1 interface residues increase the ratio k(cat)(4NPX/4NPA), suggesting that the native residues support other factors, such as C1 migration and protonation of the leaving group. Alanine mutations of subsite -1 residues raise k(cat)(X2/4NPX) and alanine mutations of subsite +1 and interface residues lower k(cat)(X2/4NPX). We propose that pyranosyl substrate distortion is supported entirely by native residues of subsite -1. Other factors leading to the transition state are supported entirely by native residues of subsite +1 and interface residues.  相似文献   

17.
Type II R67 dihydrofolate reductase (DHFR) is a bacterial plasmid-encoded enzyme that is intrinsically resistant to the widely-administered antibiotic trimethoprim. R67 DHFR is genetically and structurally unrelated to E. coli chromosomal DHFR and has an unusual architecture, in that four identical protomers form a single symmetrical active site tunnel that allows only one substrate binding/catalytic event at any given time. As a result, substitution of an active-site residue has as many as four distinct consequences on catalysis, constituting an atypical model of enzyme evolution. Although we previously demonstrated that no single residue of the native active site is indispensable for function, library selection here revealed a strong bias toward maintenance of two native protomers per mutated tetramer. A variety of such “half-native” tetramers were shown to procure native-like catalytic activity, with similar KM values but kcat values 5- to 33-fold lower, illustrating a high tolerance for active-site substitutions. The selected variants showed a reduced thermal stability (Tm ∼12°C lower), which appears to result from looser association of the protomers, but generally showed a marked increase in resilience to heat denaturation, recovering activity to a significantly greater extent than the variant with no active-site substitutions. Our results suggest that the presence of two native protomers in the R67 DHFR tetramer is sufficient to provide native-like catalytic rate and thus ensure cellular proliferation.  相似文献   

18.
The catalytic activity of a mutant of Photobacterium leiognathi Cu, Zn superoxide dismutase in which the Glu59 residue, conserved in most bacterial variants of the enzyme, has been replaced by glutamine was investigated by pulse radiolysis. At neutral pH the enzyme was found to have a kcat/KM of 1.0 +/- 0.1 x 10(10) M-1s-1 the highest value ever found for any superoxide dismutase. Brownian dynamics simulation suggests that such a high value is due to an enhanced substrate attraction by the modified electric field distribution. The mutant is also characterized by an active-site widely accessible for the solvent, since iodide is able to interact with the copper atom with an affinity constant twice as high as that found in the native enzyme. The large solvent accessible surface of the copper site together with a favorable distribution of the protein-generated electric field gives rise to the most efficient enzyme ever found with activity close to the diffusion limit.  相似文献   

19.
Halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) is a valuable tool in the preparation of R enantiomers of epoxides and β-substituted alcohols. In contrast, the halohydrin dehalogenase from Arthrobacter sp. AD2 (HheA) shows a low S enantioselectivity toward most aromatic substrates. Here, three amino acids (V136, L141, and N178) located in the two neighboring active-site loops of HheA were proposed to be the key residues for controlling enantioselectivity. They were subjected to saturation mutagenesis aimed at evolving an S-selective enzyme. This led to the selection of two outstanding mutants (the V136Y/L141G and N178A mutants). The double mutant displayed an inverted enantioselectivity (from S enantioselectivity [E(S)] = 1.7 to R enantioselectivity [E(R)] = 13) toward 2-chloro-1-phenylethanol without compromising enzyme activity. Strikingly, the N178A mutant showed a large enantioselectivity improvement (E(S) > 200) and a 5- to 6-fold-enhanced specific activity toward (S)-2-chloro-1-phenylethanol. Further analysis revealed that those mutations produced some interference for the binding of nonfavored enantiomers which could account for the observed enantioselectivities. Our work demonstrated that those three active-site residues are indeed crucial in modulating the enantioselectivity of HheA and that a semirational design strategy has great potential for rapid creation of novel industrial biocatalysts.  相似文献   

20.
Carpusca I  Schirmer J  Aktories K 《Biochemistry》2004,43(38):12009-12019
The mosquitocidal toxin (MTX) from Bacillus sphaericus SSII-1 is an approximately 97-kDa arginine-specific ADP-ribosyltransferase that is activated by proteolytic cleavage, thereby releasing the active 27-kDa enzyme (MTX(30-264)) and a 70-kDa C-terminal fragment (MTX(265-870)). In solution, the cleaved 70-kDa fragment is still a potent inhibitor of the ADP-ribosyltransferase activity of MTX. Here we studied the interaction of the 70-kDa fragment with the enzyme domain of MTX. Several C-terminal deletions of the 70-kDa fragment inhibited the enzymatic activity of MTX(30-264). However, the IC(50) values were about 2 orders of magnitude higher for the deletions than for the 70-kDa fragment. A peptide covering amino acid residues 265-285 of the holotoxin exhibited the same inhibitory potency as the C-terminal deletions of the 70-kDa fragment. MTX(265-285) contains several acidic residues, of which D273 and D275 were found to be essential for the inhibitory effect. Exchange of these residues in the 70-kDa fragment (MTX(265-870)) reduced its inhibitory potency. Kinetic analysis showed that the peptide MTX(265-285) had no effect on the V(max) of MTX(30-264) but increased the K(m) for NAD. By contrast, the 70-kDa fragment deleted of residues Ile265 through Asn285 inhibited the enzyme activity of MTX(30-264) mainly by decreasing the V(max) of the enzyme. A second binding site for interaction of MTX(265-870) with MTX(30-264) was localized to the C-terminus within the region of residues 750-870. The data support a two-site binding model for inhibition of the ADP-ribosyltransferase activity of MTX(30-264) by the 70-kDa fragment MTX(265-870) with an interaction of amino acid residues 265-285 at the active site and an allosteric inhibition by the C-terminal part of the 70-kDa fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号